Доступ предоставлен для: Guest
International Journal of Energetic Materials and Chemical Propulsion

Выходит 6 номеров в год

ISSN Печать: 2150-766X

ISSN Онлайн: 2150-7678

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 0.7 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00016 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.18 SJR: 0.313 SNIP: 0.6 CiteScore™:: 1.6 H-Index: 16

Indexed in

OXIDATION, IGNITION AND COMBUSTION OF AL-HYDROCARBON COMPOSITE REACTIVE POWDERS

Том 11, Выпуск 4, 2012, pp. 353-373
DOI: 10.1615/IntJEnergeticMaterialsChemProp.2013005043
Get accessGet access

Краткое описание

Metal fuel additives are used in advanced explosive formulations to achieve higher combustion temperatures and longer pressure pulses. Cryomilling is used to prepare Al-based reactive composites to replace pure Al as a fuel additive in explosives for multiple applications. In this project, Al-paraffin wax and Al-polyethylene composite materials were prepared and characterized. The prepared powders were initially evaluated using thermogravimetric analysis, scanning electron microscopy, and X-ray diffraction. Ignition temperatures of the prepared materials were determined at heating rates varied in the range of 2000-23000 K/s using an electrically heated filament. Materials were burned as individual particles and as aerosolized clouds. Ignition temperatures were significantly lower for all composite materials compared to pure Al. Single particle burn times were longer and combustion temperatures were comparable to those of pure Al powders. Combustion dynamics of the composite material particles was affected by the hydrocarbon additives retained in the material after its ignition despite the very high combustion temperatures. In aerosol combustion tests, the pressure for Al-hydrocarbon composites was negatively affected by strong agglomeration of the partially burned particles.

ЦИТИРОВАНО В
  1. Aly Y., Zhang S., Schoenitz M., Hoffmann V.K., Dreizin E.L., Yermakov M., Indugula R., Grinshpun S.A., Iodine-containing aluminum-based fuels for inactivation of bioaerosols, Combustion and Flame, 161, 1, 2014. Crossref

  2. Zhang Shasha, Schoenitz Mirko, Dreizin Edward L., Nearly Pure Aluminum Powders with Modified Protective Surface, Combustion Science and Technology, 185, 9, 2013. Crossref

  3. Gubin S A, Maklashova I V, Levitskaya I S, Thermal analysis of the mixtures of paraffin with aluminum in wide temperature range, Journal of Physics: Conference Series, 751, 2016. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain