Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal of Energetic Materials and Chemical Propulsion
ESCI SJR: 0.149 SNIP: 0.16 CiteScore™: 0.29

ISSN Печать: 2150-766X
ISSN Онлайн: 2150-7678

International Journal of Energetic Materials and Chemical Propulsion

DOI: 10.1615/IntJEnergeticMaterialsChemProp.2015011501
pages 399-420

TOWARDS THE SIMPLIFIED COMPOSITE PROPELLANT BURNING RATE MODEL BASED ON DETAILED CHEMISTRY CALCULATIONS

Matthew L. Gross
Naval Air Warfare Center, Weapons Division, China Lake, California 9355-6100 USA
Trevor D. Hedman
Naval Air Warfare Center, Weapons Division, China Lake, California 9355-6100 USA

Краткое описание

A simple burning rate model for ammonium perchlorate (AP) and hydroxyl-terminated-polybutadiene (HTPB) composite propellants has been developed based on detailed chemistry calculations. The detailed kinetics two-dimensional (DK2D) model, which includes detailed kinetics and species transport, was used to identify combustion trends in AP/HTPB propellants. These trends in the burning behavior of AP-based composite propellants have been verified by comparison with recently collected experimental data. A simple burning rate model has been developed based on the identified trends and calculated burning rates of the DK2D model. The methodology used to predict the burning rates with the simple model is presented. This simplified AP/HTPB burning rate model requires very minimal runtime and adequately predicts the burning rates based on AP particle size, formulation, and pressure. This model has been applied to 27 different AP/HTPB formations including mono-, bi-, and trimodal propellants, and 90% of the predictions have fallen within 20% of experimental data. The advantages and limitations of the approach are discussed.


Articles with similar content:

DIAGNOSTIC TOOLS FOR STUDIES ON BURN-RATE BEHAVIOR OF ADVANCED SOLID PROPELLANTS
International Journal of Energetic Materials and Chemical Propulsion, Vol.3, 1994, issue 1-6
A. N. Nazare, S. S. Dhar, Haridwar Singh, S. N. Asthana, P. G. Shrotri
COMBUSTION STUDY OF BORON-BASED FUEL-RICH SOLID PROPELLANT
International Journal of Energetic Materials and Chemical Propulsion, Vol.2, 1993, issue 1-6
T. K. Liu, S. P. Luh, Huey-Cherng Perng, Dah-Ming Chen, G. K. Wu
MOTION OF SWARMS OF DROPLETS
ICHMT DIGITAL LIBRARY ONLINE, Vol.5, 1997, issue
Ingo Wagner, Johann Stichlmair
MODELING AND NUMERICAL SIMULATION OF SOLID PROPELLANT COMBUSTION
Annual Review of Heat Transfer, Vol.14, 2005, issue 14
Thomas Jackson, M. Quinn Brewster
HIGH-FIDELITY PREDICTIONS OF THE EFFECTS OF PRESSURE AND PARTICLE SIZE ON AMMONIUM PERCHLORATE/HYDROXY- TERMINATED-POLYBUTADIENE PROPELLANTS
International Journal of Energetic Materials and Chemical Propulsion, Vol.9, 2010, issue 4
Matthew L. Gross, Ephraim B. Washburn, Merrill W. Beckstead