Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal of Energetic Materials and Chemical Propulsion
ESCI SJR: 0.28 SNIP: 0.421 CiteScore™: 0.9

ISSN Печать: 2150-766X
ISSN Онлайн: 2150-7678

Выпуски:
Том 19, 2020 Том 18, 2019 Том 17, 2018 Том 16, 2017 Том 15, 2016 Том 14, 2015 Том 13, 2014 Том 12, 2013 Том 11, 2012 Том 10, 2011 Том 9, 2010 Том 8, 2009 Том 7, 2008 Том 6, 2007 Том 5, 2002 Том 4, 1997 Том 3, 1994 Том 2, 1993 Том 1, 1991

International Journal of Energetic Materials and Chemical Propulsion

DOI: 10.1615/IntJEnergeticMaterialsChemProp.v6.i1.50
pages 59-74

NANO- AND MICROMETER-SCALE ALUMINUM POWDER OXIDATION IN CARBON DIOXIDE

Katrina Brandstadt
Energy & Environmental Research Laboratory, McGill University, , Montreal, Quebec H3A 2K6, Canada
David L. Frost
Department of Mechanical Engineering, McGill University, Rm 352, Macdonald Engineering Building, 817 Sherbrooke St. W., Montreal, Quebec H3A 2K6, Canada
Janusz A. Kozinski
Department of Chemical Engineering, 3b48 Engineering Building, University of Saskatchewan, 57 Campus Drive, Saskatoon SKS7N5A9 Canada

Краткое описание

The thermal oxidation of fine aluminum (Al) powders in carbon dioxide (CO2) gas was investigated for the purpose of metal-based propulsion fuel development. The thermal behavior and reaction energy was studied using simultaneous thermogravimetric (TG) analysis and differential scanning calorimetry (DSC). The reactivities of Al powders with nanometer and micrometer-scale average particle sizes were compared. The particle morphology was examined at different stages of the process using field emission gun scanning electron microscopy (FEG-SEM) and transmission electron microscopy (TEM). The corresponding chemical changes were analyzed by X-ray diffraction spectrometry (XRD) and energy dispersion X-ray spectrometry (EDS). It is found that nano- and micrometer-scale Al powders exhibited different calorimetric behavior; primarily oxidation occurred at a much lower temperature for nanopowders compared to micropowders. The mechanism of the oxide transformation and growth, particle deformations, and hollow oxide shells are discussed, along with the involvement of carbon in the reaction.


Articles with similar content:

TESTING OF METAL POWDERS BEHAVIOR IN A HOT STAGE MICROSCOPE
International Journal of Energetic Materials and Chemical Propulsion, Vol.5, 2002, issue 1-6
Alon Gany, Valery Rosenband
SOL-GEL-SUPERCRITICAL SYNTHESIS AND PROPERTIES OF NITROCELLULOSE/GLYCIDYLAZIDE POLYMER/PENTAERYTHRITOL TETRANITRATE NANOCOMPOSITES
International Journal of Energetic Materials and Chemical Propulsion, Vol.19, 2020, issue 3
Mi Zhang, Hao Huang, Xiaolan Song, Yi Wang, Feifei Shang
PRE- AND POST-COMBUSTION CHARACTERISTICS OF BORON NANOPARTICLES IN AN ETHANOL SPRAY FLAME
International Journal of Energetic Materials and Chemical Propulsion, Vol.10, 2011, issue 1
Jacob Hanberry, Sumanta Acharya, Kerry M. Dooley, Srinibas Karmakar
THE ROLE OF THE SCALE FACTOR IN ESTIMATION OF THE MECHANICAL PROPERTIES OF COMPOSITE MATERIALS WITH NANOFILLERS
Nanoscience and Technology: An International Journal, Vol.1, 2010, issue 3
H. H. Valiev, Yu. V. Kornev, O. V. Boiko, O. B. Yumashev, Yuri G. Yanovsky, Yulia N. Karnet, K. P. Kosichkina
OXIDATION, IGNITION AND COMBUSTION OF AL-HYDROCARBON COMPOSITE REACTIVE POWDERS
International Journal of Energetic Materials and Chemical Propulsion, Vol.11, 2012, issue 4
Shasha Zhang, Mirko Schoenitz, Edward L. Dreizin