Доступ предоставлен для: Guest
International Journal of Energetic Materials and Chemical Propulsion

Выходит 6 номеров в год

ISSN Печать: 2150-766X

ISSN Онлайн: 2150-7678

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 0.7 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00016 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.18 SJR: 0.313 SNIP: 0.6 CiteScore™:: 1.6 H-Index: 16

Indexed in

PROPULSION AND CATALYSIS − HISTORICAL SURVEY, UP-TO-DATE OVERVIEW, AND CURRENT CHALLENGES

Том 9, Выпуск 5, 2010, pp. 413-436
DOI: 10.1615/IntJEnergeticMaterialsChemProp.2011001450
Get accessGet access

Краткое описание

This review presents a survey on the application of catalysis to propulsion. The first application was developed for the decomposition of concentrated aqueous solutions of hydrogen peroxide before WWII in Germany (He-176 plane, V1 and V2 rocket programs, torpedoes, and submarines). After WWII, the UK Black Knight rocket program associated kerosene with H2O2 and a silver screen catalyst bed. The beginning of the space programs led to the replacement of H2O2 by more stable hydrazine, using Ir/Al2O3 catalysts, for satellites and launchers. In recent years, hydrazine substitutes (called "green propellants") have been proposed to satisfy new environmental concerns, improve performance, and reduce cost. The most studied substitutes are energetic aqueous ionic mixtures containing an ionic oxidizer and a fuel. Commonly studied oxidizers are hydroxylammonium nitrate or ammonium dinitramide. The current challenge is to develop a catalyst that is active at low temperatures and able to sustain the high temperatures of the product gases. Other candidates that have also been proposed include highly concentrated hydrogen peroxide (90−98 wt-%) and nitrous oxide N2O(g). Other applications of catalysis to propulsion are: (1) hybrid engines, which could use a liquid oxidizer that would be able to burn a solid fuel, after catalytic decomposition; (2) hypergolic bipropellants with a soluble catalyst in the fuel; (3) catalytic cracking of endothermic fuel for hypersonic jets or for air breathing pulse detonating engines; (4) catalytic ignition of cryogenic H2−O2 mixtures; or (5) as a catalyst to modify burn rates for solid propulsion.

ЦИТИРОВАНО В
  1. Esparza Alan A., Ferguson Robert E., Choudhuri Ahsan, Love Norman D., Shafirovich Evgeny, Thermoanalytical studies on the thermal and catalytic decomposition of aqueous hydroxylammonium nitrate solution, Combustion and Flame, 193, 2018. Crossref

  2. Wang Juan, Seifert Sönke, Winans Randall E., Tolmachoff Erik, Xin Yuxuan, Chen Dongping, Wang Hai, Anderson Scott L., In situ X-ray Scattering and Dynamical Modeling of Pd Catalyst Nanoparticles Formed in Flames, The Journal of Physical Chemistry C, 119, 33, 2015. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain