Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Journal of Automation and Information Sciences
SJR: 0.232 SNIP: 0.464 CiteScore™: 0.27

ISSN Печать: 1064-2315
ISSN Онлайн: 2163-9337

Выпуски:
Том 51, 2019 Том 50, 2018 Том 49, 2017 Том 48, 2016 Том 47, 2015 Том 46, 2014 Том 45, 2013 Том 44, 2012 Том 43, 2011 Том 42, 2010 Том 41, 2009 Том 40, 2008 Том 39, 2007 Том 38, 2006 Том 37, 2005 Том 36, 2004 Том 35, 2003 Том 34, 2002 Том 33, 2001 Том 32, 2000 Том 31, 1999 Том 30, 1998 Том 29, 1997 Том 28, 1996

Journal of Automation and Information Sciences

DOI: 10.1615/J Automat Inf Scien.v38.i11.60
pages 56-73

Complexity of Bayesian Procedure of Inductive Inference. Discrete Case

Boris A. Beletskiy
V.M. Glushkov Institute of Cybernetics of National Academy of Sciences of Ukraine, Kiev, Ukraine
Alexandra A. Vagis
V.M. Glushkov Institute of Cybernetics of National Academy of Sciences of Ukraine, Kiev, Ukraine
Sergey V. Vasilyev
V.M. Glushkov Institute of Cybernetics of National Academy of Sciences of Ukraine, Kiev, Ukraine
Nikita A. Gupal
V.M. Glushkov Institute of Cybernetics of National Academy of Sciences of Ukraine, Kiev

Краткое описание

Behavior of inductive procedures depending on content of learning sampling is studied. We demonstrate, that if the learning sampling contains no information about some class of objects or statistical information about a priori probabilities of classes, then any procedure works badly and its error is strictly positive. An estimate of error of Bayesian recognition procedure depending on size of learning sampling and other parameters is derived. Suboptimality of Bayesian approach is proved, complexity of class of problems is assessed.


Articles with similar content:

BAYESIAN APPROACH TO THE STATISTICAL INVERSE PROBLEM OF SCATTEROMETRY: COMPARISON OF THREE SURROGATE MODELS
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 6
Markus Bar, Sebastian Heidenreich, Hermann Gross
Method of Critical Variances as Analytical Tool of Theory of Inductive Modeling
Journal of Automation and Information Sciences, Vol.40, 2008, issue 3
Vladimir S. Stepashko
A Method for Improving the Consistency of Individual Expert Rankings during Their Aggregation
Journal of Automation and Information Sciences, Vol.44, 2012, issue 4
Vitaliy V. Tsyganok, Sergey V. Kadenko
Statistical Estimation of the Markov Pattern Recognition Procedure
Journal of Automation and Information Sciences, Vol.33, 2001, issue 4
Alexandra A. Vagis
ON THE ROBUSTNESS OF STRUCTURAL RISK OPTIMIZATION WITH RESPECT TO EPISTEMIC UNCERTAINTIES
International Journal for Uncertainty Quantification, Vol.2, 2012, issue 1
W. J. S. Gomes, F. A. V. Bazan, Andre T. Beck