Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Journal of Automation and Information Sciences
SJR: 0.238 SNIP: 0.464 CiteScore™: 0.27

ISSN Печать: 1064-2315
ISSN Онлайн: 2163-9337

Том 51, 2019 Том 50, 2018 Том 49, 2017 Том 48, 2016 Том 47, 2015 Том 46, 2014 Том 45, 2013 Том 44, 2012 Том 43, 2011 Том 42, 2010 Том 41, 2009 Том 40, 2008 Том 39, 2007 Том 38, 2006 Том 37, 2005 Том 36, 2004 Том 35, 2003 Том 34, 2002 Том 33, 2001 Том 32, 2000 Том 31, 1999 Том 30, 1998 Том 29, 1997 Том 28, 1996

Journal of Automation and Information Sciences

DOI: 10.1615/JAutomatInfScien.v51.i4.10
pages 1-11

Method for Prediction of Space Vehicle Motion Based on the Multidimensional Differential-Taylor Transformations

Mikhail Yu. Rakushev
Ivan Chernyakhovsky National University of Defence of Ukraine, Kiev

Краткое описание

A numerical-analytical method for integrating the differential equation of spacecraft motion, developed on the basis of multidimensional differential-Taylor transformations, is presented. A distinctive feature of the proposed method is the calculation of accelerations in the differential equation of spacecraft motion based on differential-Taylor transformations of different dimensions, namely: accelerations produced by conservative forces (geopotential) based on two-dimensional differential-Taylor transformations, and accelerations produced by non conservative forces (atmospheric drag, gravity of the Moon and Sun, moveable centrifugal force, Coriolis inertia force) − based on one-dimensional differential-Taylor transformations. Such approach reduces the necessary number of analytical calculations when specifying the differential equation of spacecraft motion, ensures a methodical unification of the process of developing procedures for predicting spacecraft motion. The results of comparing the computational complexity of the proposed method of integration with a well-known method based on one-dimensional differential-Taylor transformations are presented.


  1. Mamon P.A., Polovnikov V.I., Slezkinsky S.K., Ballistic support of space flights [in Russian], VIKI, Leningrad, 1990.

  2. Wertz J.R., Space mission analysis and design, Microcosm Press, 3-rd Ed., 1999.

  3. Bordovitsyna T.B., Avdyushev V.A., The theory of motion of artificial Earth satellites. Analytical and numerical methods [in Russian], Tomskiy gosudarstvennyi universitet, Tomsk, 2007.

  4. Pukhov G.E., Differential transformations and mathematical modeling of physical processes [in Russian], Naukova dumka, Kiev, 1986.

  5. Rakushev M.Yu., Prediction of spacecraft motion based on differential-Taylor transformations [in Ukrainian], Publisher A.A. Evenok, Zhytomyr, 2015, ISBN 978-617-7265-43-5.

  6. Raslan K.R., Biswas A., Zain F. Abu Sheer, Differential transform method for solving partial differential equations with variable coefficients, International Journal of Physical Sciences, 2012, 7(9), 1412-1419, http://www.academicjoumals.org/IJPS.

  7. Rakushev M.Yu., Numerical method of integrating the variational equations for Cauchy problem based on differential transformations, Journal of Automation and Information Sciences, 2015, 47, No. 9, 63-75, DOI: 10.1615/JAutomatInfScien.v47.i9.6.

  8. Rakushev M.Yu., Prediction of spacecraft motion according to a stochastic model based on differential transformations, Journal of Automation and Information Sciences, 2017, 49, No. 10, 20-35, DOI: 10.1615/JAutomatlnfScien.v49.i 10.30.

  9. Zhdanyuk B.F., Fundamentals of statistical processing of trajectory measurements [in Russian], Sovetskoye radio, Moscow, 1978.

  10. Galazin V.F., Kaplan B.L., Lebedev M.G., Maksimov V.G., and others, The system of geodetic parameters of the Earth ''Parameters of the Earth 1990'' (PZ-90) [in Russian], Koordinatsionnyi nauchno-informatsionnyi tsentr, Moscow, 1998.

  11. Kravchenko Yu.V., Rakushev M.Yu., Sudnikov Ye.O., Ushakov I.V., Efficiency of computational schemes for the integration of ordinary differential equations based on differential-Taylor transformations [in Ukrainian], Sovremennyye informatsionnyye tekhnologii v sfere bezopasnosti i oborony, 2014, No. 2 (20), 65-74.

Articles with similar content:

Study into the Thermodynamic Properties of Wet Colloid Capillary-Porous Materials
Heat Transfer Research, Vol.29, 1998, issue 4-5
R. V. Lutsyk, E. S. Malkin
Treatment of Constraints in Complex Multibody Systems. Part I: Methods of Constrained Dynamics
International Journal for Multiscale Computational Engineering, Vol.1, 2003, issue 2&3
Taira Ozaki, Ahmed A. Shabana
Resonant Dynamic Stabilization of the Inverted Pendulum with Two Degrees of Freedom
Journal of Automation and Information Sciences, Vol.34, 2002, issue 7
Alexey A. Loginov
Interfacial Phenomena and Heat Transfer, Vol.6, 2018, issue 3
Andrey L. Karchevsky
Force-Couple Induced Motion of a Floating Contour
International Journal of Fluid Mechanics Research, Vol.26, 1999, issue 3
V. G. Sizov