Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Journal of Automation and Information Sciences
SJR: 0.232 SNIP: 0.464 CiteScore™: 0.27

ISSN Печать: 1064-2315
ISSN Онлайн: 2163-9337

Выпуски:
Том 51, 2019 Том 50, 2018 Том 49, 2017 Том 48, 2016 Том 47, 2015 Том 46, 2014 Том 45, 2013 Том 44, 2012 Том 43, 2011 Том 42, 2010 Том 41, 2009 Том 40, 2008 Том 39, 2007 Том 38, 2006 Том 37, 2005 Том 36, 2004 Том 35, 2003 Том 34, 2002 Том 33, 2001 Том 32, 2000 Том 31, 1999 Том 30, 1998 Том 29, 1997 Том 28, 1996

Journal of Automation and Information Sciences

DOI: 10.1615/J Automat Inf Scien.v38.i5.30
pages 23-33

Method of Solving Nonlinear Programming Using Variable Dimension Basis

Yuriy D. Shcherbashin
National Technical University of Ukraine "Kiev Polytechnical Institute", Ukraine

Краткое описание

Consideration is given to approximation programming method with gradually increasing/decreasing basis dimension. If the solution is found in the vertex of limiting polyhedron, i.e., on the boundary of intersection of n-limiting hyperplane (n — dimension of space of searched variables), then the basis dimension reaches n; if the solution is on the faces or edges of limiting polyhedron, then the basis dimension decreases. With the solution found inside the admissible domain, then the basis dimension is zero and X-trace on the last steps corresponds to the fastest descent (ascent) algorithm. The other feature of the method is the application of quadratic approximation of discrepancy Δ φi (X) variation along admissible appropriate direction — ray σ — linear combination of edges of current basis cone. The quadratic approximation method enables us to increase the step length in comparison with the simplest methods of approximation programming.


Articles with similar content:

On Solvability of Maximization Problems in Conjugate Spaces
Journal of Automation and Information Sciences, Vol.41, 2009, issue 4
Vladimir V. Semenov
On the Choice of Optimal Coefficients and Optimal Nodes of the Quadrature Formulae for Functional Classes Given by Quasimetrics
Journal of Automation and Information Sciences, Vol.34, 2002, issue 6
Elena M. Kiseleva, Tatyana F. Stepanchuk
Solving a Continuous Single-product Problem of Optimal Partitioning with Additional Conditions
Journal of Automation and Information Sciences, Vol.41, 2009, issue 7
Yana E. Kadochnikova, Elena M. Kiseleva
COMPUTATIONAL HEAT TRANSFER WITH MATHEMATICA
ICHMT DIGITAL LIBRARY ONLINE, Vol.3, 1997, issue
Mikhail D. Mikhailov
Coordination Approach to the Organization of Motion of Manipulation Robots
Journal of Automation and Information Sciences, Vol.29, 1997, issue 2-3
Yuriy V. Krak