Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Journal of Automation and Information Sciences
SJR: 0.238 SNIP: 0.464 CiteScore™: 0.27

ISSN Печать: 1064-2315
ISSN Онлайн: 2163-9337

Выпуски:
Том 51, 2019 Том 50, 2018 Том 49, 2017 Том 48, 2016 Том 47, 2015 Том 46, 2014 Том 45, 2013 Том 44, 2012 Том 43, 2011 Том 42, 2010 Том 41, 2009 Том 40, 2008 Том 39, 2007 Том 38, 2006 Том 37, 2005 Том 36, 2004 Том 35, 2003 Том 34, 2002 Том 33, 2001 Том 32, 2000 Том 31, 1999 Том 30, 1998 Том 29, 1997 Том 28, 1996

Journal of Automation and Information Sciences

DOI: 10.1615/JAutomatInfScien.v50.i7.70
pages 79-86

On Formalization of Information Dissemination Processes Based on Hybrid Diffusion Models

Evgeniy V. Ivokhin
Kiev National Taras Shevchenko University, Kiev
Yuriy A. Naumenko
Kiev National Taras Shevchenko University, Kiev

Краткое описание

This paper proposes an approach to constructing hybrid mathematical models of dynamics of information dissemination process in a certain social or regional group of population. The proposed technique allows one to describe the levels of influence and storage of information based on the solution of diffusion equation whose variation of propagation intervals is modeled by additional relations in the form of differential equations. A scalar solution for the one-dimensional and two-dimensional representation of contingent is considered.

ЛИТЕРАТУРА

  1. Kastler G., The emergence of biological organization [Russian translation], Mir, Moscow, 1967.

  2. Chernavskiy D.S., Synergetics and information: dynamic information theory [in Russian], Nauka, Moscow, 2001.

  3. Braychevskiy S.M., Lande D.V., Present information flows: urgent problems, Nauchno-tekhnicheskaya informatsiya, 2005, 1, No. 11, 21–33.

  4. Kermack W.O., McKendrick A.G., A contribution to the mathematical theory of epidemics, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1927, 115, No. 772, 700–721.

  5. Smith R., Modelling disease ecology with mathematics, American Institute of Mathematical Sciences, Ottawa, 2008.

  6. Hairer E., Nersett S., Vanner G., Solution of ordinary differential equations. Nonrigid tasks [Russian translation], Mir, Moscow, 1990.

  7. Aramanovich I.G., Levin V.I., Equations of mathematical physics [in Russian], Nauka, Moscow, 1969.

  8. Fikhtengolts G.M., Course of differential and integral calculation. Vol. 3 [in Russian], Fizmatlit, Moscow, 2003.

  9. Ivokhin E.V., Naumenko Yu.O., On some mathematical models of process of advertizing dissemination in society, Visnyk KNU imeni Tarasa Shevchenka. Seriya FMN, 2017, No. 1, 55–58.


Articles with similar content:

Analysis and Modeling of Economic Processes of the Transitional Period
Journal of Automation and Information Sciences, Vol.31, 1999, issue 4-5
O. V. Polovtsev, Petr I. Bidyuk
PREDICTION OF THE TROPOSPHERIC REFRACTION FACTOR IN ARBITRARY POINTS OF SPACE USING RESULTS OF MEASUREMENTS ON METEOROLOGICAL PARAMETERS IN BASE STATIONS
Telecommunications and Radio Engineering, Vol.72, 2013, issue 9
I. V. Lutsenko, V.N. Gudkov, N.X. Ahn, O. V. Sytnik, V. I. Lutsenko
Use of Modern Methods of Mathematical Programming for Scheduling Power Generating Systems
Journal of Automation and Information Sciences, Vol.35, 2003, issue 1
Alexey L. Bodnya, Igor N. Golovanov
Optimization of Structure of Capital Investments for Investment Project of Enterprise
Journal of Automation and Information Sciences, Vol.32, 2000, issue 4
Yuliya V. Bondarenko, Mikhail Z. Zgurowsky
RANDOM PREDICTOR MODELS FOR RIGOROUS UNCERTAINTY QUANTIFICATION
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 5
Daniel P. Giesy, Sean P. Kenny, Luis G. Crespo