Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Journal of Automation and Information Sciences
SJR: 0.238 SNIP: 0.464 CiteScore™: 0.27

ISSN Печать: 1064-2315
ISSN Онлайн: 2163-9337

Выпуски:
Том 51, 2019 Том 50, 2018 Том 49, 2017 Том 48, 2016 Том 47, 2015 Том 46, 2014 Том 45, 2013 Том 44, 2012 Том 43, 2011 Том 42, 2010 Том 41, 2009 Том 40, 2008 Том 39, 2007 Том 38, 2006 Том 37, 2005 Том 36, 2004 Том 35, 2003 Том 34, 2002 Том 33, 2001 Том 32, 2000 Том 31, 1999 Том 30, 1998 Том 29, 1997 Том 28, 1996

Journal of Automation and Information Sciences

DOI: 10.1615/JAutomatInfScien.v50.i7.20
pages 7-24

Numerical Study of the Stability of Composite Materials on Computers of Hybrid Architecture

Alexander N. Khimich
V.M. Glushkov Institute of Cybernetics of National Academy of Sciences of Ukraine, Kiev
Vladimir А. Dekret
S.P. Timoshenko Institute of Mechanics of National Academy of Sciences of Ukraine, Kiev
Alexander V. Popov
V.M. Glushkov Institute of Cybernetics of National Academy of Sciences of Ukraine, Kiev
Aleksei V. Chistyakov
V.M. Glushkov Institute of Cybernetics of National Academy of Sciences of Ukraine, Kiev

Краткое описание

The problem of numerical investigation of the stability of composite materials under compression along the reinforced elements using multicore computers with graphic processors is considered. The problem of the three-dimensional theory of stability of composites with the using the "finite-size fibers" model and mathematical methods for its solution are presented. A hybrid algorithm for solving a particular generalized eigenvalue problem for band matrices is proposed.

ЛИТЕРАТУРА

  1. https://www.top500.org/Lists/2017/11/.

  2. Nemnyugin S.A., Stesik O.L., Parallel programming for multiprocessor computing systems [in Russian], BHV-Petersburg, SPb, 2002.

  3. Boreskov A.V., Kharlamov A.A., Fundamentals of working with CUDA technology [in Russian], DMK Press, Moscow, 2010.

  4. Guz A.N., Bases of the three-dimensional theory of stability of deformable bodies [in Russian], Vishcha school, Kiev, 1986.

  5. Guz A.N., Fundamentals of the three-dimensional theory of stability of deformable bodies, Heidelberg, Berlin, New York, Springer, 1999.

  6. Guz A.N., Dekret V.A., Short fiber model in the theory of stability of composites [in Russian], Lambert Acad. Publ., Saarbruecken, 2015.

  7. Guz A.N., Mechanics of fracture of composite materials under compression [in Russian], Naukova dumka, Kiev, 1990.

  8. Kokhanenko Yu.V., Numerical study of three-dimensional stability problems for laminated and ribbon-reinforced composites, Int. Appl. Mech., 2001, 37, No. 3, 317–345.

  9. Guz A.N., Kokhanenko Yu.V., Numerical solution of problems of the three-dimensional theory of stability of elastic bodies, Prikladnaya mekhanika, 2004, 40, No. 11, 117–126.

  10. Guz A.N., Dekret V.A., Kokhanenko Yu.V., Solution of plane problems of the three-dimensional problems stability of a ribbon-reinforced composite, Int. Appl. Mech., 2000, 36, No. 10, 1317–1328.

  11. Guz A.N., Dekret V.A., Interaction of two parallel short fibers in the matrix at loss of stability, Computer Modeling in Engineering & Sciences, 2006, 13, No. 3, 165–170.

  12. Guz A.N., Dekret V.A., On two models in the three-dimensional theory of stability of composites, Int. Appl. Mech., 2008, 44, No. 8, 839–854.

  13. Guz A.N., Dekret V.A., Stability loss in nanotube reinforced composites, Computer Modeling in Engineering & Sciences, 2009, 42, No. 1, 69-80.

  14. Guz A.N., Dekret V.A., Stability problem of composite material reinforced by periodical row of short fibers, Ibid., 2009, 42, No. 3, 177–186.

  15. Parlett B., Symmetric eigenvalue problem. Numerical methods [Russian translation], Mir, Moscow, 1983.

  16. Khimich A.N., Molchanov I.N., Popov A.V., Chistyakova T.V., Yakovlev M.F., Parallel algorithms for solving problems of computational mathematics [in Russian], Naukova dumka, Kiev, 2008.

  17. Khimich A.N., Popov A.V., Chistyakov A.V., Hybrid algorithms for solving the algebraic eigenvalue problem with sparse matrices, Kibernetika i sistemnyi analiz, 2017, 53, No. 6, 132–146.

  18. Khimich A.N., Baranov A.Yu., Hybrid algorithm for solving linear systems with band matrices by direct methods, Kompyuternaya matematika, 2013, 2, 80–87.

  19. Khimich A.N., Molchanov I.N., Mova V.I., Nikolaychuk O.O., Popov O.V., Chistyakova T.V., Yakovlev M.F., Tulchinskiy V.G., Yushchenko R.A., Intellectual personal supercomputer for solving scientific and technical problems, Nauka i innovatsii, 2016, 12.

  20. https://www.mathworks.com/products/matlab-online.html.

  21. https://www.intel.com/content/www/us/en/products/processors/xeon-phi.

  22. Chistyakov A.V., On some features of the solution of the algebraic eigenvalue problem on parallel computers with Intel Xeon Phi processors, Proceedings of the International Scientific Conference “Modern Informatics: Problems, Achievements and Developm.


Articles with similar content:

Design of the Thickness Meters for Dielectric Coating
Telecommunications and Radio Engineering, Vol.59, 2003, issue 7-9
M.V. Cehovski
Forming of Different Complication Structures for Packet Radio Networks
Telecommunications and Radio Engineering, Vol.56, 2001, issue 11
I. I. Pasechnikov, V. V. Zhelonkin, T. Ya. Gorazdovsky, P. G. Gorev
Application of Forecasting GMDH Algorithms for Marketing Problems Solution
Journal of Automation and Information Sciences, Vol.40, 2008, issue 3
Grigoriy A. Ivakhnenko
Modified Extragradient Method with Bregman Divergence for Variational Inequalities
Journal of Automation and Information Sciences, Vol.50, 2018, issue 8
Vladimir V. Semenov
EFFECT OF THE PHASE STATE OF A POLYMER MATRIX ON THE DEGREE OF REINFORCEMENT OF POLYMER ORGANOCLAY NANOCOMPOSITES
Nanoscience and Technology: An International Journal, Vol.9, 2018, issue 2
Georgii V. Kozlov, A. N. Vlasov, I. V. Dolbin, Yulia N. Karnet