Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Critical Reviews™ in Immunology
Импакт фактор: 1.352 5-летний Импакт фактор: 3.347 SJR: 0.657 SNIP: 0.55 CiteScore™: 2.19

ISSN Печать: 1040-8401
ISSN Онлайн: 2162-6472

Выпуски:
Том 39, 2019 Том 38, 2018 Том 37, 2017 Том 36, 2016 Том 35, 2015 Том 34, 2014 Том 33, 2013 Том 32, 2012 Том 31, 2011 Том 30, 2010 Том 29, 2009 Том 28, 2008 Том 27, 2007 Том 26, 2006 Том 25, 2005 Том 24, 2004 Том 23, 2003 Том 22, 2002 Том 21, 2001 Том 20, 2000 Том 19, 1999 Том 18, 1998 Том 17, 1997 Том 16, 1996 Том 15, 1995 Том 14, 1994

Critical Reviews™ in Immunology

DOI: 10.1615/CritRevImmunol.2017018316
pages 359-378

Flow Cytometric Characterization of Antigen-Specific T Cells Based on RNA and Its Advantages in Detecting Infections and Immunological Disorders

Felix Radford
Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520
Sanjay Tyagi
Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103
Maria Laura Gennaro
Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103
Richard Pine
Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103
Yuri Bushkin
Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103

Краткое описание

Fluorescence in situ hybridization coupled with flow cytometry (FISH-Flow) is a highly quantitative, high-throughput platform allowing precise quantification of total mRNA transcripts in single cells. In undiagnosed infections posing a significant health burden worldwide, such as latent tuberculosis or asymptomatic recurrent malaria, an important challenge is to develop accurate diagnostic tools. Antigen-specific T cells create a persistent memory to pathogens, making them useful for diagnosis of infection. Stimulation of memory response initiates T-cell transitions between functional states. Numerous studies have shown that changes in protein levels lag real-time T-cell transitions. However, analysis at the single-cell transcriptional level can determine the differences. FISH-Flow is a powerful tool with which to study the functional states of T-cell subsets and to identify the gene expression profiles of antigen-specific T cells during disease progression. Advances in instrumentation, fluorophores, and FISH methodologies will broaden and deepen the use of FISH-Flow, changing the immunological field by allowing determination of functional immune signatures at the mRNA level and the development of new diagnostic tools.


Articles with similar content:

A Review and Comparative Analysis of Recent Advancements in Fetal Monitoring Techniques
Critical Reviews™ in Biomedical Engineering, Vol.36, 2008, issue 5-6
Anil Kumar Tiwari, Vijay Chourasia
Next-Generation Sequencing for Minimal Residual Disease Surveillance in Acute Lymphoblastic Leukemia: An Update
Critical Reviews™ in Oncogenesis, Vol.22, 2017, issue 5-6
Yi Ding, Cynthia Reyes-Barron, Paul G. Rothberg, W. Richard Burack
Toll-Like Receptors and B-Cell Receptors Synergize to Induce Immunoglobulin Class-Switch DNA Recombination: Relevance to Microbial Antibody Responses
Critical Reviews™ in Immunology, Vol.30, 2010, issue 1
Ahmed Al-Qahtani, Egest J. Pone, Paolo Casali, Jing-Song Zhang, Hong Zan, Zhenming Xu
Methylation-Based Biomarkers for Early Detection of Urological Cancer
Critical Reviews™ in Oncogenesis, Vol.13, 2007, issue 4
Carmen Jeronimo, Rui Manuel Ferreira Henrique, Vera L. Costa
Regulation of the Cancer Stem Cell Phenotype by Raf Kinase Inhibitor Protein via Its Association with Kruppel-Like Factor 4
Forum on Immunopathological Diseases and Therapeutics, Vol.7, 2016, issue 1-2
Stephanie Wottrich , Benjamin Bonavida