Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Critical Reviews™ in Immunology
Импакт фактор: 1.352 5-летний Импакт фактор: 3.347 SJR: 1.022 SNIP: 0.55 CiteScore™: 2.19

ISSN Печать: 1040-8401
ISSN Онлайн: 2162-6472

Выпуски:
Том 39, 2019 Том 38, 2018 Том 37, 2017 Том 36, 2016 Том 35, 2015 Том 34, 2014 Том 33, 2013 Том 32, 2012 Том 31, 2011 Том 30, 2010 Том 29, 2009 Том 28, 2008 Том 27, 2007 Том 26, 2006 Том 25, 2005 Том 24, 2004 Том 23, 2003 Том 22, 2002 Том 21, 2001 Том 20, 2000 Том 19, 1999 Том 18, 1998 Том 17, 1997 Том 16, 1996 Том 15, 1995 Том 14, 1994

Critical Reviews™ in Immunology

DOI: 10.1615/CritRevImmunol.v30.i1.60
pages 79-93

The Global Problem of Antibiotic Resistance

Thomas D. Gootz
Thomas Gootz Consulting, 14 Dickinson Court, Deep River, CT 06417, USA

Краткое описание

Amid the recent attention justly focused on the potential problem of microbial sources for weapons of bioterrorism, it is also apparent that human pathogens frequently isolated from infections in patients from community and hospital sources have been growing more resistant to commonly used antibiotics. Much of the growth of multiple-drug-resistant (MDR) bacterial pathogens can be contributed to the overuse of broad-spectrum antimicrobial products. However, an equally troubling and often overlooked component of the problem involves the elegant ways in which pathogenic bacteria continually evolve complex genetic systems for acquiring and regulating an endless array of antibiotic-resistance mechanisms. Efforts to develop new antimicrobials have over the past two decades been woefully behind the rapid evolution of resistance genes developing among both gram-positive and gram-negative pathogens. Several new agents that are best suited for use in the hospital environment have been developed to combat staphylococci resistant to β-lactam antimicrobials following acquisition of the mecA gene. However, the dramatic spread in the US of the now common community strain of Staphylococcus aureus USA300 has shifted the therapeutic need for new antibiotics useful against MRSA to the community. As the pharmaceutical industry focused on discovering new agents for use against MRSA, hospitals in many parts of the world have seen the emergence of gram-negative pathogens such as Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae that are clinically resistant to almost all available antimicrobials. Such MDR isolates usually contain multiple-resistance determinants, including loss of outer membrane porins via gene inactivation by chromosomally encoded insertion sequences, up-regulation of inate efflux pumps, as well as acquisition of drug-inactivating enzymes whose genes are encoded on self-transmissible plasmids, integrons, and complex transposable elements. These determinants confer a complex resistance phenotype that is often superimposed on mutations in the primary drug target in the cell. The continued evolution of such a complex array of antibiotic-resistance genes presents a formidable challenge at a time when large pharmaceutical companies have scaled down their presence in the anti-infectives arena.


Articles with similar content:

Novel Insights into Mycobacterium Antigen Ag85 Biology and Implications in Countermeasures for M. tuberculosis
Critical Reviews™ in Eukaryotic Gene Expression, Vol.22, 2012, issue 3
Jianping Xie, XieMei Tang, Wanyan Deng
Nanostructured Platforms for the Sustained and Local Delivery of Antibiotics in the Treatment of Osteomyelitis
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.32, 2015, issue 1
Vuk Uskokovic
Proteomics for the Development of Vaccines and Therapeutics
Critical Reviews™ in Immunology, Vol.30, 2010, issue 3
Vito G. DelVecchio, Clarissa Dake, Tim Alefantis, Paul Grewal, Mark A. Sabato, Jessica Trichilo
Mycobacterium Biofilms: Factors Involved in Development, Dispersal, and Therapeutic Strategies Against Biofilm-Relevant Pathogens
Critical Reviews™ in Eukaryotic Gene Expression, Vol.24, 2014, issue 3
Jianping Xie, Wanyan Deng, Xiaohong Xiang, Minqiang Liu
Mycobacterium Tuberculosis Proteases and Implications for New Antibiotics Against Tuberculosis
Critical Reviews™ in Eukaryotic Gene Expression, Vol.21, 2011, issue 4
Jianping Xie, Quanju Zhao