Доступ предоставлен для: Guest
Critical Reviews™ in Therapeutic Drug Carrier Systems
Главный редактор: Mandip Sachdeva Singh (open in a new tab)

Выходит 6 номеров в год

ISSN Печать: 0743-4863

ISSN Онлайн: 2162-660X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 3.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.8 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.39 SJR: 0.42 SNIP: 0.89 CiteScore™:: 5.5 H-Index: 79

Indexed in

Dry Powder Nasal Vaccines as an Alternative to Needle-Based Delivery

Том 26, Выпуск 1, 2009, pp. 1-27
DOI: 10.1615/CritRevTherDrugCarrierSyst.v26.i1.10
Get accessGet access

Краткое описание

Drug delivery to the nasal cavity has been achieved using a variety of systems. Dry powder vaccines offer the advantages of chemical and physical stability in comparison to liquid formulations. An intranasal vaccine can elicit both a local and systemic immune response. Mucoadhesive compounds can extend the residence time for powder formulations on the nasal mucosa, potentially increasing the immune response. Manufacture and characterization of a formulation containing particles of a dry powder vaccine are discussed.

ЦИТИРОВАНО В
  1. Balducci Anna Giulia, Ferraro Luca, Bortolotti Fabrizio, Nastruzzi Claudio, Colombo Paolo, Sonvico Fabio, Russo Paola, Colombo Gaia, Antidiuretic effect of desmopressin chimera agglomerates by nasal administration in rats, International Journal of Pharmaceutics, 440, 2, 2013. Crossref

  2. Velasquez Lissette S., Shira Samantha, Berta Alice N., Kilbourne Jacquelyn, Medi Babu M., Tizard Ian, Ni Yawei, Arntzen Charles J., Herbst-Kralovetz Melissa M., Intranasal delivery of Norwalk virus-like particles formulated in an in situ gelling, dry powder vaccine, Vaccine, 29, 32, 2011. Crossref

  3. Michel J., Moreddu E., Varoquaux A., Dessi P., Esplorazioni fisiche e funzionali delle fosse nasali, EMC - Otorinolaringoiatria, 13, 3, 2014. Crossref

  4. Watts Peter J., Smith Alan, Re-formulating drugs and vaccines for intranasal delivery: maximum benefits for minimum risks?, Drug Discovery Today, 16, 1-2, 2011. Crossref

  5. Levine Myron M., “IDEAL” vaccines for resource poor settings, Vaccine, 29, 2011. Crossref

  6. Tataru G., Popa M., Costin D., Desbrieres J., Microparticles based on natural and synthetic polymers for ophthalmic applications, Journal of Biomedical Materials Research Part A, 100A, 5, 2012. Crossref

  7. Ramvikas M., Arumugam M., Chakrabarti S.R., Jaganathan K.S., Nasal Vaccine Delivery, in Micro and Nanotechnology in Vaccine Development, 2017. Crossref

  8. Scherließ Regina, Nasal Administration of Vaccines, in Subunit Vaccine Delivery, 2015. Crossref

  9. Hickey Anthony J., Staats Herman, Roy Chad J., Powell Kenneth G., Sullivan Vince, Rothrock Ginger, Sayes Christie M., Nasal Dry Powder Vaccine Delivery Technology, in Molecular Vaccines, 2014. Crossref

  10. Romani N., Flacher V., Tripp C. H., Sparber F., Ebner S., Stoitzner P., Targeting Skin Dendritic Cells to Improve Intradermal Vaccination, in Intradermal Immunization, 351, 2011. Crossref

  11. Hellfritzsch , Scherließ , Mucosal Vaccination via the Respiratory Tract, Pharmaceutics, 11, 8, 2019. Crossref

  12. Sánchez-López Edwin F., Corigliano Mariana G., Oliferuk Sonia, Ramos-Duarte Victor A., Rivera Maximiliano, Mendoza-Morales Luisa F., Angel Sergio O., Sander Valeria A., Clemente Marina, Oral Immunization With a Plant HSP90-SAG1 Fusion Protein Produced in Tobacco Elicits Strong Immune Responses and Reduces Cyst Number and Clinical Signs of Toxoplasmosis in Mice, Frontiers in Plant Science, 12, 2021. Crossref

  13. Pilicheva Bissera, Boyuklieva Radka, Can the Nasal Cavity Help Tackle COVID-19?, Pharmaceutics, 13, 10, 2021. Crossref

  14. Scherließ Regina, Nasal formulations for drug administration and characterization of nasal preparations in drug delivery, Therapeutic Delivery, 11, 3, 2020. Crossref

  15. Zainutdinov S. S., Sivolobova G. F., Loktev V. B., Kochneva G. V., Mucosal immunity and vaccines against viral infections, Problems of Virology, 66, 6, 2022. Crossref

  16. Tai Junhu, Han Munsoo, Lee Dabin, Park Il-Ho, Lee Sang Hag, Kim Tae Hoon, Different Methods and Formulations of Drugs and Vaccines for Nasal Administration, Pharmaceutics, 14, 5, 2022. Crossref

  17. Al-Nemrawi Nusaiba K., Darweesh Ruba S., Al-shriem Lubna A., Al-Qawasmi Farah S., Emran Sereen O., Khafajah Areej S., Abu-Dalo Muna A., Polymeric Nanoparticles for Inhaled Vaccines, Polymers, 14, 20, 2022. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain