Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Critical Reviews™ in Therapeutic Drug Carrier Systems
Импакт фактор: 2.9 5-летний Импакт фактор: 3.72 SJR: 0.736 SNIP: 0.551 CiteScore™: 2.43

ISSN Печать: 0743-4863
ISSN Онлайн: 2162-660X

Выпуски:
Том 36, 2019 Том 35, 2018 Том 34, 2017 Том 33, 2016 Том 32, 2015 Том 31, 2014 Том 30, 2013 Том 29, 2012 Том 28, 2011 Том 27, 2010 Том 26, 2009 Том 25, 2008 Том 24, 2007 Том 23, 2006 Том 22, 2005 Том 21, 2004 Том 20, 2003 Том 19, 2002 Том 18, 2001 Том 17, 2000 Том 16, 1999 Том 15, 1998 Том 14, 1997 Том 13, 1996 Том 12, 1995

Critical Reviews™ in Therapeutic Drug Carrier Systems

DOI: 10.1615/CritRevTherDrugCarrierSyst.v19.i2.30
20 pages

Glycosylated Cationic Liposomes for Cell-Selective Gene Delivery

Mitsuru Hashida
Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
Fumiyoshi Yamashita
Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
Koyo Nishida
School of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8131, Japan
Junzo Nakamura
School of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8131, Japan

Краткое описание

Cationic liposomes have been considered as a potential nonviral vector for gene delivery because they possess low immunogenicity, unlike viral vectors. The gene transfer efficiency of cationic liposomes is lower than that of viral vectors, but recent advances have shown that it is possible to enhance the gene expression levels ofcationic liposomes. The main problem with cationic liposomes seems to be the lack of organ or cell selectivity because the lung has the highest level of gene expression after intravenous injection. Applying cell-specific targeting technology to liposomes would improve in vivo gene delivery and reduce any unexpected side effects. Both liver parenchymal and non-parenchymal cells exclusively express large numbers of high-affinity asialoglycoprotein and mannose receptors, respectively. Receptor-mediated gene delivery systems are able to introduce foreign DNA into specific cell types in vivo. However, we have confirmed that not only the nature of the ligands grafted to carriers but also the overall physicochemical properties of the complexes need to be optimized for effective cell-selective targeting of plasmid DNA. In this article, we attempt to evaluate a gene delivery system based on the physicochemical properties of plasmid DNA/glycosylated cationic complexes.


Articles with similar content:

Gene Delivery Using Lipoplexes and Polyplexes: Principles, Limitations and Solutions
Critical Reviews™ in Eukaryotic Gene Expression, Vol.29, 2019, issue 1
Amir Roointan, Najmeh Farahani, Esmat Safdarian, Seyed Mohammad Gheibi Hayat, Amirhossein Sahebkar
Polymeric Gene Carriers
Critical Reviews™ in Eukaryotic Gene Expression, Vol.15, 2005, issue 4
Han Chang Kang, You Han Bae, Minhyung Lee
Topotecan Liposomes: A Visit from a Molecular to a Therapeutic Platform
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.33, 2016, issue 5
Shivani Saraf, Ankit Jain, Pooja Hurkat, Sanjay Kumar Jain
Nonviral Vectors for In Vivo Gene Delivery: Physicochemical and Pharmacokinetic Considerations
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.14, 1997, issue 2
Ram I. Mahato, Mitsuru Hashida, Yoshinobu Takakura
Delivery of Biotherapeutics by Inhalation Aerosol
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.12, 1995, issue 2-3
Ralph W. Niven