Доступ предоставлен для: Guest
Critical Reviews™ in Therapeutic Drug Carrier Systems
Главный редактор: Mandip Sachdeva Singh (open in a new tab)

Выходит 6 номеров в год

ISSN Печать: 0743-4863

ISSN Онлайн: 2162-660X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 3.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.8 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.39 SJR: 0.42 SNIP: 0.89 CiteScore™:: 5.5 H-Index: 79

Indexed in

Combination Cancer Therapy Using Multifunctional Liposomes

Том 37, Выпуск 2, 2020, pp. 105-134
DOI: 10.1615/CritRevTherDrugCarrierSyst.2019026358
Get accessGet access

Краткое описание

Chemotherapy of cancer is still considered a complex phenomenon given that single chemotherapeutic agents cannot be administered for a long period of time because of the development of drug resistance and severe side effects. Nanodrug delivery systems (NDDSs) such as nanoparticles and liposomes are being investigated to enhance the safety and efficacy of anticancer agents. NDDS-based delivery of a single agent is not found to be effective in long-term anticancer therapy. Codelivery of more than one anticancer agent using liposomes shows great potential since it exhibits simultaneous synergistic therapeutic manifestations at the tumor site and enhances therapeutic efficacy in terms of the low-dose requirement of each agent and diminished side effects. Liposomes are lipid vesicles arranged in concentric bilayers with an aqueous core; they are versatile nanocarriers that accommodate the diverse nature of anticancer drugs (both hydrophobic and hydrophilic) at the same time. They offer a number of advantages for combinatorial drug delivery in terms of increased blood circulation, selective accumulation at tumor tissues, and stimuli responsiveness. Various combination of drugs such as paclitaxel (PTX) and topotecan, sunitinib and irinotecan, and combretastin A-4 and doxorubicin have been reported for cancer chemotherapy using liposomes. This review focuses on recent scenarios of combinatorial drug delivery using liposomes for better chemotherapeutic outcomes. This assemblage can be of great importance to researchers looking for advances in novel drug delivery approaches for better cancer treatment.

ЛИТЕРАТУРА
  1. Bangham AD, Horne RW. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol. 1964 May;8:660-8. PubMed PMID: 14187392. Epub 1964/05/01.eng.

  2. Jain A, Jain SK. Stimuli-responsive smart liposomes in cancer targeting. Curr Drug Targets. 2018 Feb 8;19(3):259-70. PubMed PMID: 26853324. Epub 2016/02/09.eng.

  3. Zhang L, Radovic-Moreno AF, Alexis F, Gu FX, Basto PA, Bagalkot V, Jon S, Langer RS, Farokhzad OC. Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle-aptamer bioconjugates. Chem Med Chem. 2007 Sep;2(9):1268-71. PubMed PMID: 17600796. Epub 2007/06/30.eng.

  4. Davis ME, Shin DM. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nature Rev Drug Discov. 2008;7(9):771-82.

  5. Jain A, Kumari R, Tiwari A, Verma A, Tripathi A, Shrivastava A, Jain SK. Nanocarrier based advances in drug delivery to tumor: An overview. Curr Drug Targets. 2018 Jan 30;19(13):1498-518. PubMed PMID: 29384060. Epub 2018/02/01.eng.

  6. Northfelt DW, Dezube BJ, Thommes JA, Miller BJ, Fischl MA, Friedman-Kien A, Kaplan LD, Du Mond C, Mamelok RD, Henry DH. Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi's sarcoma: Results of a randomized phase III clinical trial. J Clin Oncol. 1998;16(7):2445-51.

  7. Perche F, Torchilin VP. Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. J Drug Deliv. 2013;2013:705265. PubMed PMID: 23533772. Pubmed Central PMCID: 3606784. Epub 2013/03/28.eng.

  8. Jain A, Jain SK. Ligand-appended BBB-targeted nanocarriers (LABTNs). Crit Rev Ther Drug Carrier Syst. 2015;32(2):149-80. PubMed PMID: 25955883.

  9. Jain A, Jain SK. Application potential of engineered liposomes in tumor targeting. In: Grumezescu A, editor. Multifunctional systems for combined delivery, biosensing and diagnostics. Edinburgh, London: Elsevier-Health Sciences Division; 2017. p. 171-92.

  10. Jain A, Jain SK. P-gp inhibitors: A potential tool to overcome drug resistance in cancer chemotherapy. Nanomed Tissue Eng: State Art Recent Trends. 2016:247.

  11. Jain A, Jain SK. Liposomes in cancer therapy. In: Jimenez C, editor. Nanocarrier systems for drug delivery. New York: Nova Science Publishers; 2016. p. 1-42.

  12. Haag R, Kratz F. Polymer therapeutics: Concepts and applications. Angew Chem Int Ed. 2006;45(8): 1198-215.

  13. Tiram G, Scomparin A, Ofek P, Satchi-Fainaro R. Interfering cancer with polymeric siRNA nanocarriers. Nanotechnology. 2013;9:1-17.

  14. Duncan R, Vicent MJ. Polymer therapeutics-prospects for 21st century: The end of the beginning. Adv Drug Del Rev. 2013;65(1):60-70.

  15. Perez-Herrero E, Fernandez-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015;93:52-79.

  16. Saraf S, Jain A, Hurkat P, Jain SK. Topotecan liposomes: A visit from a molecular to a therapeutic platform. Crit Rev Ther Drug Carrier Syst. 2016;33(5):401-32. PubMed PMID: 27910741.

  17. Tavano L. Liposomal gels in enhancing skin delivery of drugs. In: Dragicevic N, Maibach H, editors. Percutaneous penetration enhancers chemical methods in penetration enhancement. Berlin, Germany: Springer-Verlag; 2015. p. 329-341.

  18. Glasgow MD, Chougule MB. Recent developments in active tumor targeted multifunctional nanoparticles for combination chemotherapy in cancer treatment and imaging. J Biomed Nanotechnol. 2015 Nov;11(11):1859-98. PubMed PMID: 26554150. Pubmed Central PMCID: 4816444.

  19. Eldar-Boock A, Polyak D, Scomparin A, Satchi-Fainaro R. Nano-sized polymers and liposomes designed to deliver combination therapy for cancer. Curr Opin Biotechnol. 2013;24(4):682-9.

  20. Hu Q, Sun W, Wang C, Gu Z. Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv Drug Deliv Rev. 2016 Mar 01;98:19-34. PubMed PMID: 26546751. Pubmed Central PMCID: PMC4998845. Epub 2015/11/08.eng.

  21. Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Del Rev. 2013 1;65(1):71-9.

  22. Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A. Application of liposomes in medicine and drug delivery. Artificial Cells Nanomed Biotechnol. 2016;44(1):381-91.

  23. Xing H, Hwang K, Lu Y. Recent developments of liposomes as nanocarriers for theranostic applications. Theranostics. 2016;6(9):1336.

  24. Gabizon A, Catane R, Uziely B, Kaufman B, Safra T, Cohen R, Martin F, Huang A, Barenholz Y. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res. 1994;54(4):987-92.

  25. Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011 Mar 18;63(3):136-51. PubMed PMID: 20441782.

  26. Yaroslavov AA, Sybachin AV, Zaborova OV, Zezin AB, Talmon Y, Ballauff M, Menger FM. Multi-liposomal containers. Adv Colloid Interf Sci. 2015 Dec;226(Pt A):54-64. PubMed PMID: 26372095. Epub 2015/09/16.eng.

  27. Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomed. 2015;10:975-99. PubMed PMID: 25678787. Pubmed Central PMCID: PMC4324542. Epub 2015/02/14.eng.

  28. Livney YD, Assaraf YG. Rationally designed nanovehicles to overcome cancer chemoresistance. Adv Drug Deliv Rev. 2013 Nov;65(13-14):1716-30. PubMed PMID: 23954781. Epub 2013/08/21.eng.

  29. Chaudhury A, Das S. Folate receptor targeted liposomes encapsulating anti-cancer drugs. Curr Pharm Biotechnol. 2015;16(4):333-43. PubMed PMID: 25601598. Epub 2015/01/21.eng.

  30. Nogueira E, Gomes AC, Preto A, Cavaco-Paulo A. Design of liposomal formulations for cell targeting. Colloids Surf B Biointerf. 2015 Dec 01;136:514-26. PubMed PMID: 26454541. Epub 2015/10/12.eng.

  31. Allen TM, Hansen C, Martin F, Redemann C, Yau-Young A. Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta. 1991 Jul 1;1066(1):29-36.

  32. Sharma VK, Jain A, Soni V. Nano-aggregates: Emerging delivery tools for tumor therapy. Crit Rev Ther Drug Carrier Syst. 2013;30(6):535-63. PubMed PMID: 24099399.

  33. Jain SK, Jain A. Ligand mediated drug targeted liposomes (LMDTLs). In: Samad A, Beg S, Nazish I, editors. Liposomal delivery systems: Advances and challenges. London, UK: Future Science Group; 2016. p. 144-158.

  34. Prajapati SK, Jain A, Shrivastava C, Jain AK. Hyaluronic acid conjugated multi-walled carbon nano-tubes for colon cancer targeting. Int J Biol Macromol. 2019;123:691-703.

  35. Jain A, Tiwari A, Verma A, Jain SK. Ultrasound-based triggered drug delivery to tumors. Drug Deliv Trans Res. 2018;8(1):150-64.

  36. Jain A, Jain, SK. Brain targeting using surface functionalized nanocarriers in human solid tumors. In: Singh B, Jain NK, Katare OP, editors. Drug nanocarriers. Houston, TX: Studium Press; 2014. p. 203-55.

  37. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7-30.

  38. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57-70.

  39. Xu X, Zhang L, Assanhou AG, Wang L, Zhang Y, Li W, Xue L, Mo R, Zhang C. Acid/redox dual-activated liposomes for tumor-targeted drug delivery and enhanced therapeutic efficacy. RSC Adv. 2015;5(83):67803-8.

  40. Dong JT. Prevalent mutations in prostate cancer. J Cell Biochem. 2006 Feb 15;97(3):433-47. PubMed PMID: 16267836. Epub 2005/11/04.eng.

  41. Suggitt M, Bibby MC. 50 years of preclinical anticancer drug screening: Empirical to target-driven approaches. Clin Cancer Res. 2005 Feb 01;11(3):971-81. PubMed PMID: 15709162. Epub 2005/02/15. eng.

  42. Ismael GF, Rosa DD, Mano MS, Awada A. Novel cytotoxic drugs: Old challenges, new solutions. Cancer Treat Rev. 2008 Feb;34(1):81-91. PubMed PMID: 17905518. Epub 2007/10/02.eng.

  43. Kolishetti N, Dhar S, Valencia PM, Lin LQ, Karnik R, Lippard SJ, Langer R, Farokhzad OC. Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):17939-44. PubMed PMID: 20921363. Pubmed Central PMCID: PMC2964221. Epub 2010/10/06.eng.

  44. Aryal S, Hu CM, Zhang L. Combinatorial drug conjugation enables nanoparticle dual-drug delivery. Small. 2010 Jul 05;6(13):1442-8. PubMed PMID: 20564488. Epub 2010/06/22.eng.

  45. Tiwari A, Jain A, Verma A, Jain SK. Exploitable signaling pathways for the treatment of inflammatory bowel disease. Curr Signal Transduct Ther. 2017;12(2):76-84.

  46. James JS, Dubs G. FDA approves new kind of lymphoma treatment. AIDS Treat News. 1997 Dec 05(284):2-3. PubMed PMID: 11364912. Epub 2001/05/22.eng.

  47. Albanell J, Baselga J. Trastuzumab, a humanized anti-HER2 monoclonal antibody, for the treatment of breast cancer. Drugs Today (Barc). 1999 Dec;35(12):931-46. PubMed PMID: 12973420. Epub 2003/09/16.eng.

  48. Ishida T, Ichihara M, Wang X, Yamamoto K, Kimura J, Majima E, Kiwada H. Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J Control Release. 2006;112(1):15-25.

  49. Ta T, Porter TM. Thermosensitive liposomes for localized delivery and triggered release of chemotherapy. J Control Release. 2013 Jul 10;169(1-2):112-25. PubMed PMID: 23583706. Epub 2013/04/16. eng.

  50. Greco F, Vicent MJ. Combination therapy: Opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv Drug Deliv Rev. 2009 Nov 12;61(13):1203-13. PubMed PMID: 19699247. Epub 2009/08/25.eng.

  51. Jain A, Jain SK. Multipronged, strategic delivery of paclitaxel-topotecan using engineered liposomes to ovarian cancer. Drug Dev Ind Pharm. 2016 Jan;42(1):136-49. PubMed PMID: 26006330. Epub 2015/05/27.eng.

  52. Mayer LD, Janoff AS. Optimizing combination chemotherapy by controlling drug ratios. Mol Interv. 2007 Aug;7(4):216-23. PubMed PMID: 17827442. Epub 2007/09/11.eng.

  53. Debbage P, Jaschke W. Molecular imaging with nanoparticles: Giant roles for dwarf actors. Histochem Cell Biol. 2008 Nov;130(5):845-75. PubMed PMID: 18825403. Epub 2008/10/01.eng.

  54. Jain A, Jain SK. Colon targeted liposomal systems (CTLS): Theranostic potential. Curr Mol Med. 2015;15(7):621-33. PubMed PMID: 26321756. Epub 2015/09/01.eng.

  55. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, Farokhzad OC. Quantum dotaptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 2007 0ct;7(10):3065-70. PubMed PMID: 17854227. Epub 2007/09/15.eng.

  56. Park JH, von Maltzahn G, Zhang L, Schwartz MP, Ruoslahti E, Bhatia SN, Sailor MJ. Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv Mater. 2008 May 05;20(9):1630-5. PubMed PMID: 21687830. Pubmed Central PMCID: PMC3115756. Epub 2008/05/05.eng.

  57. McCarthy JR, Weissleder R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Del Rev. 2008;60(11):1241-51.

  58. Jain A, Jain SK. Environmentally responsive chitosan-based nanocarriers (CBNs). In: Thakur V, editor. Handbook of polymers for pharmaceutical technologies: Biodegradable polymers, vol. 3. Beverly, MA: Scrivener Publishing; 2015. p. 105-125.

  59. Sanhai WR, Sakamoto JH, Canady R, Ferrari M. Seven challenges for nanomedicine. Nat Nanotechnol. 2008 May;3(5):242-4. PubMed PMID: 18654511. Epub 2008/07/26.eng.

  60. Parhi P, Mohanty C, Sahoo SK. Nanotechnology-based combinational drug delivery: An emerging approach for cancer therapy. Drug Discov Today. 2012 Sep;17(17-18): 1044-52. PubMed PMID: 22652342. Epub 2012/06/02.eng.

  61. Wang H, Zhao Y, Wu Y, Hu Y-l, Nan K, Nie G, Chen H. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials. 2011;32(32):8281-90.

  62. Segal E, Pan H, Benayoun L, Kopeckova P, Shaked Y, Kopecek J, Satchi-Fainaro R. Enhanced antitumor activity and safety profile of targeted nano-scaled HPMA copolymer-alendronate-TNP-470 conjugate in the treatment of bone malignances. Biomaterials. 2011;32(19):4450-63.

  63. Nimmano N, Somavarapu S, Taylor KM. Aerosol characterisation of nebulised liposomes co-loaded with erlotinib and genistein using an abbreviated cascade impactor method. Int J Pharm. 2018 May 5;542(1-2):8-17.

  64. Jose A, Labala S, Ninave KM, Gade SK, Venuganti VVK. Effective skin cancer treatment by topical co-delivery of curcumin and STAT3 siRNA using cationic liposomes. AAPS Pharm Sci Tech. 2018;19(1):166-75.

  65. Peres-Filho MJ, dos Santos AP, Nascimento TL, de Avila RI, Ferreira FS, Valadares MC, Lima EM. Antiproliferative activity and VEGF expression reduction in MCF7 and PC-3 cancer cells by paclitaxel and imatinib co-encapsulation in folate-targeted liposomes. AAPS Pharm Sci Tech. 2018;19(1):201-12.

  66. Silva-Weiss A, Quilaqueo M, Venegas O, Ahumada M, Silva W, Osorio F, Gimenez B. Design of dipalmitoyl lecithin liposomes loaded with quercetin and rutin and their release kinetics from carboxy-methyl cellulose edible films. J Food Eng. 2018 May 1;224:165-73.

  67. Liu Y, Xu S, Teng L, Yung B, Zhu J, Ding H, Lee RJ. Synthesis and evaluation of a novel lipophilic folate receptor targeting ligand. Anticancer Res. 2011 May;31(5):1521-5. PubMed PMID: 21617205. Epub 2011/05/28.eng.

  68. Zhu L, Kate P, Torchilin VP. Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano. 2012 Apr 24;6(4):3491-8. PubMed PMID: 22409425. Pubmed Central PMCID: 3337349.

  69. Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today. 2005;10(21):1451-8.

  70. Xiang B, Dong DW, Shi NQ, Gao W, Yang ZZ, Cui Y, Cao DY, Qi XR. PSA-responsive and PSMA-mediated multifunctional liposomes for targeted therapy of prostate cancer. Biomaterials. 2013 Sep;34(28):6976-91. PubMed PMID: 23777916. Epub 2013/06/20.eng.

  71. Takara K, Hatakeyama H, Kibria G, Ohga N, Hida K, Harashima H. Size-controlled, dual-ligand modified liposomes that target the tumor vasculature show promise for use in drug-resistant cancer therapy. J Control Release. 2012;162(1):225-32.

  72. Jain A, Jain SK. Advances in tumor targeted liposomes. Curr Mol Med. 2018;18(1):44-57.

  73. Bolfarini GC, Siqueira-Moura MP, Demets GJF, Morais PC, Tedesco AC. In vitro evaluation of combined hyperthermia and photodynamic effects using magnetoliposomes loaded with cucurbit[7]uril zinc phthalocyanine complex on melanoma. J Photochem Photobiol B: Biol. 2012;115:1-4.

  74. Kamaly N, Kalber T, Thanou M, Bell JD, Miller AD. Folate receptor targeted bimodal liposomes for tumor magnetic resonance imaging. Bioconjug Chem. 2009 Apr;20(4):648-55. PubMed PMID: 19368341. Epub 2009/04/17.eng.

  75. Pradhan P, Giri J, Rieken F, Koch C, Mykhaylyk O, Doblinger M, Banerjee R, Bahadur D, Plank C. Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J Control Release. 2010 Feb 25;142(1):108-21. PubMed PMID: 19819275. Epub 2009/10/13.eng.

  76. Kluza E, van der Schaft DWJ, Hautvast PAI, Mulder WJM, Mayo KH, Griffioen AW, Strijkers GJ, Nicolay K. Synergistic targeting of avp3 integrin and galectin-1 with heteromultivalent paramagnetic liposomes for combined MR imaging and treatment of angiogenesis. Nano Lett. 2010;10(1):52-8.

  77. Shim G, Han SE, Yu YH, Lee S, Lee HY, Kim K, Kwon IC, Park TG, Kim YB, Choi YS, Kim CW, Oh YK. Trilysinoyl oleylamide-based cationic liposomes for systemic co-delivery of siRNA and an anticancer drug. J Control Release. 2011 Oct 10;155(1):60-6. PubMed PMID: 20971142.

  78. Biswas S, Dodwadkar NS, Sawant RR, Torchilin VP. Development of the novel PEG-PE-based polymer for the reversible attachment of specific ligands to liposomes: Synthesis and in vitro characterization. Bioconjug Chem. 2011 Oct 19;22(10):2005-13. PubMed PMID: 21870873. Pubmed Central PMCID: PMC3197796. Epub 2011/08/30.eng.

  79. Leite EA, Souza CM, Carvalho-Junior AD, Coelho LG, Lana AM, Cassali GD, Oliveira MC. Encapsulation of cisplatin in long-circulating and pH-sensitive liposomes improves its antitumor effect and reduces acute toxicity. Int J Nanomed. 2012;7:5259-69. PubMed PMID: 23091378. Pubmed Central PMCID: 3471600.

  80. Kim MS, Lee DW, Park K, Park SJ, Choi EJ, Park ES, Kim HR. Temperature-triggered tumor-specific delivery of anticancer agents by cRGD-conjugated thermosensitive liposomes. Colloids Surf B Biointerf. 2014 Apr 1;116:17-25. PubMed PMID: 24441178. Epub 2014/01/21.eng.

  81. Du B, Han S, Li H, Zhao F, Su X, Cao X, Zhang Z. Multi-functional liposomes showing radiofrequency-triggered release and magnetic resonance imaging for tumor multi-mechanism therapy. Nanoscale. 2015;7(12):5411-26.

  82. Xiong S, Yu B, Wu J, Li H, Lee RJ. Preparation, therapeutic efficacy and intratumoral localization of targeted daunorubicin liposomes conjugating folate-PEG-CHEMS. Biomed Pharmacother. 2011 Feb;65(1):2-8. PubMed PMID: 21177069. Epub 2010/12/24.eng.

  83. Song S, Chen F, Qi H, Li F, Xin T, Xu J, Ye T, Sheng N, Yang X, Pan W. Multifunctional tumor-targeting nanocarriers based on hyaluronic acid-mediated and pH-sensitive properties for efficient delivery of docetaxel. Pharm Res. 2014;31(4):1032-45.

  84. Ta T, Bartolak-Suki E, Park E-J, Karrobi K, McDannold NJ, Porter TM. Localized delivery of doxorubicin in vivo from polymer-modified thermosensitive liposomes with MR-guided focused ultrasound-mediated heating. J Control Release. 2014;194:71-81.

  85. Kono K, Nakashima S, Kokuryo D, Aoki I, Shimomoto H, Aoshima S, Maruyama K, Yuba E, Kojima C, Harada A, Ishizaka Y. Multi-functional liposomes having temperature-triggered release and magnetic resonance imaging for tumor-specific chemotherapy. Biomaterials. 2011 Feb;32(5):1387-95. PubMed PMID: 21093041. Epub 2010/11/26.eng.

  86. Gordon AN, Fleagle JT, Guthrie D, Parkin DE, Gore ME, Lacave AJ. Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan. J Clin Oncol. 2001;19(14):3312-22.

  87. Arias JL. Drug targeting strategies in cancer treatment: An overview. Mini Rev Med Chem. 2011;11(1):1-17.

  88. Chiu GN, Wong MY, Ling LU, Shaikh IM, Tan KB, Chaudhury A, Tan BJ. Lipid-based nanoparticulate systems for the delivery of anti-cancer drug cocktails: Implications on pharmacokinetics and drug toxicities. Curr Drug Metab. 2009 Oct;10(8):861-74. PubMed PMID: 20214582. Epub 2010/03/11. eng.

  89. Shapira A, Livney YD, Broxterman HJ, Assaraf YG. Nanomedicine for targeted cancer therapy: Towards the overcoming of drug resistance. Drug Resist Updat. 2011 Jun;14(3):150-63. PubMed PMID: 21330184. Epub 2011/02/19.eng.

  90. Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965 Aug;13(1):238-52. PubMed PMID: 5859039. Epub 1965/08/01.eng.

  91. Jain A, Jain SK. In vitro release kinetics model fitting of liposomes: An insight. Chem Phys Lipids. 2016 Oct 29;201:28-40. PubMed PMID: 27983957.

  92. Gottesman MM. Mechanisms of cancer drug resistance. Ann Rev Med. 2002;53(1):615-27.

  93. Hennessy M, Spiers JP. A primer on the mechanics of P-glycoprotein, the multidrug transporter. Pharmacol Res. 2007 Jan;55(1):1-15. PubMed PMID: 17095241. Epub 2006/11/11.eng.

  94. Zhou J, Shum K-T, Burnett JC, Rossi JJ. Nanoparticle-based delivery of RNAi therapeutics: Progress and challenges. Pharmaceuticals. 2013;6(1):85-107.

  95. Xu L, Anchordoquy T. Drug delivery trends in clinical trials and translational medicine: Challenges and opportunities in the delivery of nucleic acid-based therapeutics. J Pharm Sci. 2011;100(1):38-52.

  96. Huang W, Chen L, Kang L, Jin M, Sun P, Xin X, Gao Z, Bae YH. Nanomedicine-based combination anticancer therapy between nucleic acids and small-molecular drugs. Adv Drug Del Rev. 2017;115:82-97.

  97. Chen Y, Zhu X, Zhang X, Liu B, Huang L. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther. 2010 Sep;18(9):1650-6. PubMed PMID: 20606648. Pubmed Central PMCID: PMC2956922. Epub 2010/07/08.eng.

  98. de Nigris F, Balestrieri ML, Napoli C. Targeting c-Myc, Ras and IGF cascade to treat cancer and vascular disorders. Cell Cycle. 2006 Aug;5(15):1621-8. PubMed PMID: 16921263. Epub 2006/08/22.eng.

  99. Li N, Fu H, Tie Y, Hu Z, Kong W, Wu Y, Zheng X. miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Lett. 2009 Mar 08;275(1):44-53. PubMed PMID: 19006648. Epub 2008/11/14.eng.

  100. Halaby MJ, Yang DQ. p53 translational control: A new facet of p53 regulation and its implication for tumorigenesis and cancer therapeutics. Gene. 2007 Jun 15;395(1-2):1-7. PubMed PMID: 17395405. Epub 2007/03/31.eng.

  101. Grothey A. Future directions in vascular endothelial growth factor-targeted therapy for metastatic colorectal cancer. Semin Oncol. 2006 Oct;33(5 Suppl 10):S41-9. PubMed PMID: 17145524. Epub 2006/12/06.eng.

  102. Kang SH, Cho HJ, Shim G, Lee S, Kim SH, Choi HG, Kim CW, Oh YK. Cationic liposomal co-delivery of small interfering RNA and a MEK inhibitor for enhanced anticancer efficacy. Pharm Res. 2011 Dec;28(12):3069-78. PubMed PMID: 21879387.

  103. Grossman D, Kim PJ, Schechner JS, Altieri DC. Inhibition of melanoma tumor growth in vivo by survivin targeting. Proc Natl Acad Sci USA. 2001 Jan 16;98(2):635-40. PubMed PMID: 11149963. Pubmed Central PMCID: PMC14640. Epub 2001/01/10.eng.

  104. Li Y, Liu R, Yang J, Ma G, Zhang Z, Zhang X. Dual sensitive and temporally controlled campto-thecin prodrug liposomes codelivery of siRNA for high efficiency tumor therapy. Biomaterials. 2014;35(36):9731-45.

  105. Srimanee A, Regberg J, Hallbrink M, Vajragupta O, Langel U. Role of scavenger receptors in peptide-based delivery ofplasmid DNA across a blood-brain barrier model. Int J Pharm. 2016;500(1-2):128-35.

  106. Youn P, Chen Y, Furgeson DY. A myristoylated cell-penetrating peptide bearing a transferrin receptor-targeting sequence for neuro-targeted siRNA delivery. Mol Pharm. 2014;11(2):486-95.

  107. Wei L, Guo X-Y, Yang T, Yu M-Z, Chen D-W, Wang J-C. Brain tumor-targeted therapy by systemic delivery of siRNA with transferrin receptor-mediated core-shell nanoparticles. Int J Pharm. 2016;510(1):394-405.

  108. Kim SK, Huang L. Nanoparticle delivery of a peptide targeting EGFR signaling. J Control Release. 2012 Jan 30;157(2):279-86. PubMed PMID: 21871507. Pubmed Central PMCID: PMC3229664. Epub 2011/08/30.eng.

  109. Verma A, Jain A, Tiwari A, Jain SK. Emulgels: application potential in drug delivery. In: Thakur V, editor. Functional biopolymers. Cham, Switzerland: Springer; 2017. p. 343-371.

  110. Chaulagain B, Jain A, Tiwari A, Verma A, Jain SK. Passive delivery of protein drugs through transdermal route. Artific Cells Nanomed Biotechnol. 2018;46(1):472-87.

  111. Shi G, Guo W, Stephenson SM, Lee RJ. Efficient intracellular drug and gene delivery using folate receptor-targeted pH-sensitive liposomes composed of cationic/anionic lipid combinations. J Control Release. 2002 Apr 23;80(1-3):309-19. PubMed PMID: 11943407. Epub 2002/04/12.eng.

  112. Wilhelm C, Gazeau F, Roger J, Pons JN, Bacri JC. Interaction of anionic superparamagnetic nanoparticles with cells: Kinetic analyses of membrane adsorption and subsequent internalization. Langmuir. 2002;18(21):8148-55.

  113. Kim M, Ahn S, Kim H, editors. Magnetic design of a three-phase wireless power transfer system for EMF reduction. 2014 IEEE Wireless Power Transfer Conference. NewYork: IEEE; 2014.

  114. Kolhatkar R, Lote A, Khambati H. Active tumor targeting of nanomaterials using folic acid, transferrin and integrin receptors. Curr Drug Discov Technol. 2011 Sep;8(3):197-206. PubMed PMID: 21696360. Epub 2011/06/24.eng.

  115. Blume G, Cevc G, Crommelin MD, Bakker-Woudenberg IA, Kluft C, Storm G. Specific targeting with poly(ethylene glycol)-modified liposomes: Coupling of homing devices to the ends of the polymeric chains combines effective target binding with long circulation times. Biochim Biophys Acta. 1993 Jun 18;1149(1):180-4. PubMed PMID: 8318529.

  116. Dufes C, Schatzlein AG, Tetley L, Gray AI, Watson DG, Olivier J-C, Couet W, Uchegbu IF. Niosomes and polymeric chitosan based vesicles bearing transferrin and glucose ligands for drug targeting. Pharm Res. 2000;17(10):1250-8.

  117. Murase Y, Asai T, Katanasaka Y, Sugiyama T, Shimizu K, Maeda N, Oku N. A novel DDS strategy, "dual-targeting," and its application for antineovascular therapy. Cancer Lett. 2010 Jan 28;287(2):165-71. PubMed PMID: 19616372.

  118. Qin L, Wang CZ, Fan HJ, Zhang CJ, Zhang HW, Lv MH, Cui SD. A dual-targeting liposome conjugated with transferrin and arginine-glycine-aspartic acid peptide for glioma-targeting therapy. Oncol Lett. 2014;8(5):2000-6.

  119. Yue PJ, He L, Qiu SW, Li Y, Liao YJ, Li XP, Xie D, Peng Y. OX26/CTX-conjugated PEGylated liposome as a dual-targeting gene delivery system for brain glioma. Mol Cancer. 2014;13:191. PubMed PMID: 25128329. Pubmed Central PMCID: PMC4137094. Epub 2014/08/17.eng.

  120. Liu Y, Mei L, Xu C, Yu Q, Shi K, Zhang L, Wang Y, Zhang Q, Gao H, Zhang Z, He Q. Dual receptor recognizing cell penetrating peptide for selective targeting, efficient intratumoral diffusion and synthesized anti-glioma therapy. Theranostics. 2016;6(2):177-91. PubMed PMID: PMC4729767.

  121. Zheng C, Ma C, Bai E, Yang K, Xu R. Transferrin and cell-penetrating peptide dual-functioned lipoome for targeted drug delivery to glioma. Int J Clin Exp Med. 2015;8(2):1658.

  122. Yang R, Mondal G, Wen D, Mahato RI. Combination therapy of paclitaxel and cyclopamine polymer-drug conjugates to treat advanced prostate cancer. Nanomed Nanotechnol Biol Med. 2017;13(2):391-401.

  123. Liu H, Xie Y, Zhang Y, Cai Y, Li B, Mao H, Liu Y, Lu J, Zhang L, Yu R. Development of a hypoxia-triggered and hypoxic radiosensitized liposome as a doxorubicin carrier to promote synergetic chemo-/radio-therapy for glioma. Biomaterials. 2017;121:130-43.

  124. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3(6):401-10.

  125. Siemann DW, Mercer E, Lepler S, Rojiani AM. Vascular targeting agents enhance chemotherapeutic agent activities in solid tumor therapy. Int J Cancer. 2002;99(1):1-6.

  126. Pastorino F, Brignole C, Di Paolo D, Nico B, Pezzolo A, Marimpietri D, Pagnan G, Piccardi F, Cilli M, Longhi R, Ribatti D, Corti A, Allen TM, Ponzoni M. Targeting liposomal chemotherapy via both tumor cell-specific and tumor vasculature-specific ligands potentiates therapeutic efficacy. Cancer Res. 2006;66(20):10073-82.

  127. Loi M, Marchio S, Becherini P, Di Paolo D, Soster M, Curnis F, Brignole C, Pagnan G, Perri P, Caffa I, Longhi R, Nico B, Bussolino F, Gambini C, Ribatti D, Cilli M, Arap W, Pasqualini R, Allen TM, Corti A, Ponzoni M, Pastorino F. Combined targeting of perivascular and endothelial tumor cells enhances antitumor efficacy of liposomal chemotherapy in neuroblastoma. J Control Release. 2010 Jul 1;145(1):66-73. PubMed PMID: 20346382. Epub 2010/03/30.eng.

  128. Patel NR, Rathi A, Mongayt D, Torchilin VP. Reversal of multidrug resistance by co-delivery of tariquidar (XR9576) and paclitaxel using long-circulating liposomes. Int J Pharm. 2011 Sep 15;416(1):296-9. PubMed PMID: 21703341. Pubmed Central PMCID: PMC3156341. Epub 2011/06/28.eng.

  129. Pakunlu RI, Wang Y, Tsao W, Pozharov V, Cook TJ, Minko T. Enhancement of the efficacy of chemo-therapy for lung cancer by simultaneous suppression of multidrug resistance and antiapoptotic cellular defense. Cancer Res. 2004;64(17):6214-24.

  130. Zhang M, Garbuzenko OB, Reuhl KR, Rodriguez-Rodriguez L, Minko T. Two-in-one: Combined targeted chemo and gene therapy for tumor suppression and prevention of metastases. Nanomedicine (Lond). 2012 Feb;7(2):185-97. PubMed PMID: 22339132. Epub 2012/02/22.eng.

  131. Patel K, Doddapaneni R, Sekar V, Chowdhury N, Singh M. Combination approach of YSA peptide anchored docetaxel stealth liposomes with oral antifibrotic agent for the treatment of lung cancer. Mol Pharm. 2016;13(6):2049-58.

  132. Fuchs-Tarlovsky V. Role of antioxidants in cancer therapy. Nutrition. 2013;29(1):15-21.

  133. Wong MY, Chiu GN. Liposome formulation of co-encapsulated vincristine and quercetin enhanced antitumor activity in a trastuzumab-insensitive breast tumor xenograft model. Nanomedicine. 2011 Dec;7(6):834-40. PubMed PMID: 21371568. Epub 2011/03/05.eng.

  134. Zhang R, Song X, Liang C, Yi X, Song G, Chao Y, Yang Y, Yang K, Feng L, Liu Z. Catalase-loaded cisplatin-prodrug-constructed liposomes to overcome tumor hypoxia for enhanced chemo-radiotherapy of cancer. Biomaterials. 2017;138:13-21.

  135. Yoon HJ, Lee HS, Jung JH, Kim HK, Park JH. Photothermally amplified therapeutic liposomes for effective combination treatment of cancer. ACS Appl Mater Interfaces. 2018 Feb 21;10(7):6118-23.

  136. Mukherjee S, Baidoo JN, Sampat S, Mancuso A, David L, Cohen LS, Zhou S, Banerjee P. Liposomal TriCurin, a synergistic combination of curcumin, epicatechin gallate and resveratrol, repolarizes tumor-associated microglia/macrophages, and eliminates glioblastoma (GBM) and GBM stem cells. Molecules. 2018;23(1):201.

  137. Song X-L, Liu S, Jiang Y, Gu L-Y, Xiao Y, Wang X, Cheng L, Li X-T. Targeting vincristine plus tetran-drine liposomes modified with DSPE-PEG2000-transferrin in treatment of brain glioma. Eur J Pharm Sci. 2017;96:129-40.

  138. Kang X-J, Wang H-Y, Peng H-G, Chen B-F, Zhang W-Y, Wu A-H, Xu Q, Huang Y-Z. Codelivery of dihydroartemisinin and doxorubicin in mannosylated liposomes for drug-resistant colon cancer therapy. Acta Pharmacol Sin. 2017;38(6):885.

  139. Lv Y, Xu C, Zhao X, Lin C, Yang X, Xin X, Zhang L, Qin C, Han X, Yang L, He W. Nanoplatform assembled from a CD44-targeted prodrug and smart liposomes for dual targeting of tumor microenvironment and cancer cells. ACS Nano. 2018 Feb 27;12(2):1519-36.

  140. Eloy JO, Petrilli R, Topan JF, Antonio HMR, Barcellos JPA, Chesca DL, Serafini LN, Tiezzi DG, Lee RJ, Marchetti JM. Co-loaded paclitaxel/rapamycin liposomes: development, characterization and in vitro and in vivo evaluation for breast cancer therapy. Colloids Surf B Biointerf. 2016;141:74-82.

  141. Petrilli R, O Eloy J, FV Lopez R, Lee RJ. Cetuximab immunoliposomes enhance delivery of 5-fu to skin squamous carcinoma cells. Anti-Cancer Agents Med Chem (Formerly Curr Med Chem-Anti-Cancer Agents). 2017;17(2):301-8.

  142. Ravera M, Gabano E, Zanellato I, Gallina A, Perm E, Arrais A, Cantamessa S, Osella D. Cisplatin and valproate released from the bifunctional [Pt (IV) Cl 2 (NH 3) 2 (valproato) 2] antitumor prodrug or from liposome formulations: Who does what? Dalton Trans. 2017;46(5):1559-66.

  143. Li J, Guo C, Feng F, Fan A, Dai Y, Li N, Zhao D, Chen X, Lu Y. Co-delivery of docetaxel and palmitoyl ascorbate by liposome for enhanced synergistic antitumor efficacy. Sci Rep. 2016;6:38787.

  144. Jain A, Gulbake A, Jain A, Shilpi S, Hurkat P, Jain SK. Dual drug delivery using "smart" liposomes for triggered release of anticancer agents. J Nanopart Res. 2013;15(7):1-12.

  145. Chen X, Yuan M, Zhang Q, Ting Yang Y, Gao H, He Q. Synergistic combination of doxorubicin and paclitaxel delivered by blood brain barrier and glioma cells dual targeting liposomes for chemotherapy of brain glioma. Curr Pharm Biotechnol. 2016;17(7):636-50.

  146. Yuan M, Qiu Y, Zhang L, Gao H, He Q. Targeted delivery of transferrin and TAT co-modified liposomes encapsulating both paclitaxel and doxorubicin for melanoma. Drug Deliv. 2016;23(4):1171-83.

  147. Mohan A, Narayanan S, Balasubramanian G, Sethuraman S, Krishnan UM. Dual drug loaded nano-liposomal chemotherapy: A promising strategy for treatment of head and neck squamous cell carcinoma. Eur J Pharm Biopharm. 2016;99:73-83.

  148. Passero Jr FC, Grapsa D, Syrigos KN, Saif MW. The safety and efficacy of Onivyde (irinotecan liposome injection) for the treatment of metastatic pancreatic cancer following gemcitabine-based therapy. Expert Rev Anticancer Ther. 2016;16(7):697-703.

  149. Buyukkoroglu G, Senel B, Baaran E, Yenilmez E, Yazan Y. Preparation and in vitro evaluation of vaginal formulations including siRNA and paclitaxel-loaded SLNs for cervical cancer. Eur J Pharm Biopharm. 2016;109:174-83.

  150. Wang-Gillam A, Li C-P, Bodoky G, Dean A, Shan Y-S, Jameson G, Macarulla T, Lee K-H, Cunningham D, Blanc JF. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): A global, randomised, open-label, phase 3 trial. Lancet. 2016;387(10018):545-57.

  151. Wang X, Chen X, Yang X, Gao W, He B, Dai W, Zhang H, Wang X, Wang J, Zhang X. A nano-medicine based combination therapy based on QLPVM peptide functionalized liposomal tamoxifen and doxorubicin against luminal A breast cancer. Nanomed Nanotechnol Biol Med. 2016;12(2): 387-97.

  152. Meng J, Guo F, Xu H, Liang W, Wang C, Yang XD. Combination therapy using co-encapsulated resveratrol and paclitaxel in liposomes for drug resistance reversal in breast cancer cells in vivo. Sci Rep. 2016 Mar 7;6:22390.

  153. Jin C, Li H, He Y, He M, Bai L, Cao Y, Song W, Dou K. Combination chemotherapy of doxorubicin and paclitaxel for hepatocellular carcinoma in vitro and in vivo. J Cancer Res Clin Oncol. 2010;136(2):267-74.

  154. Rosati MS, Raimondi C, Baciarello G, Grassi P, Giovannoni S, Petrelli E, Basile ML, Girolami M, Di Seri M, Frati L. Weekly combination of non-pegylated liposomal doxorubicin and taxane in first-line breast cancer: wALT trial (phase I-II). Ann Oncol. 2011 Feb 1;22(2):315-20.

  155. Shi J-F, Sun M-G, Li X-Y, Zhao Y, Ju R-J, Mu L-M, Yan Y, Li X-T, Zeng F, Lu W-L. A combination of targeted sunitinib liposomes and targeted vinorelbine liposomes for treating invasive breast cancer. J Biomed Nanotechnol. 2015;11(9):1568-82.

  156. Zhang B, Wang T, Yang S, Xiao Y, Song Y, Zhang N, Garg S. Development and evaluation of oxaliplatin and irinotecan co-loaded liposomes for enhanced colorectal cancer therapy. J Control Release. 2016;238:10-21.

  157. Kim J-Y, Shim G, Choi H-W, Park J, Chung SW, Kim S, Kim K, Chan Kwon I, Kim C-W, Kim SY, Yang VC, Oh Y-K, Byun Y. Tumor vasculature targeting following co-delivery of heparin-taurocholate conjugate and suberoylanilide hydroxamic acid using cationic nanolipoplex. Biomaterials. 2012;33(17):4424-30.

  158. Liu G-X, Fang G-Q, Xu W. Dual targeting biomimetic liposomes for paclitaxel/DNA combination cancer treatment. Int J Mol Sci. 2014;15(9):15287-303.

  159. Yang Z-Z, Li J-Q, Wang Z-Z, Dong D-W, Qi X-R. Tumor-targeting dual peptides-modified cationic liposomes for delivery of siRNA and docetaxel to gliomas. Biomaterials. 2014;35(19):5226-39.

  160. Dai W, Jin W, Zhang J, Wang X, Wang J, Zhang X, Wan Y, Zhang Q. Spatiotemporally controlled co-delivery of anti-vasculature agent and cytotoxic drug by octreotide-modified stealth liposomes. Pharm Res. 2012 Oct;29(10):2902-11. PubMed PMID: 22723122. Epub 2012/06/23.eng.

  161. Maswadeh HM, Aljarbou AN, Alorainy MS, Rahmani AH, Khan MA. Coadministration of doxorubicin and etoposide loaded in camel milk phospholipids liposomes showed increased antitumor activity in a murine model. Int J Nanomed. 2015;10:2847.

  162. Myhren L, Nilssen IM, Nicolas V, Doskeland SO, Barratt G, Herfindal L. Efficacy of multi-functional liposomes containing daunorubicin and emetine for treatment of acute myeloid leukaemia. Eur J Pharm Biopharm. 2014 Sep;88(1):186-93. PubMed PMID: 24747809. Epub 2014/04/22.eng.

  163. Maitani Y, Saito H, Seishi Y, Iwase Y, Yamauchi T, Higashiyama K, Sugino T. A combination of liposomal sunitinib plus liposomal irinotecan and liposome co-loaded with two drugs enhanced antitumor activity in PC12-bearing mouse. J Drug Target. 2012 Dec;20(10):873-82. PubMed PMID: 23050928.

  164. Tas F, Derin D, Guney N, Aydiner A, Topuz E. Chemotherapy with pegylated liposomal doxorubicin and cisplatin in recurrent platinum-sensitive epithelial ovarian cancer. Int J Clin Oncol. 2008 Aug 1;13(4):330-4.

  165. Zucker D, Andriyanov AV, Steiner A, Raviv U, Barenholz Y. Characterization of PEGylated nanoliposomes co-remotely loaded with topotecan and vincristine: Relating structure and pharmacokinetics to therapeutic efficacy. J Control Release. 2012 Jun 10;160(2):281-9. PubMed PMID: 22019556. Epub 2011/10/25.eng.

  166. Lim WS, Tardi PG, Dos Santos N, Xie X, Fan M, Liboiron BD, Huang X, Harasym TO, Bermudes D, Mayer LD. Leukemia-selective uptake and cytotoxicity of CPX-351, a synergistic fixed-ratio cytarabine: Daunorubicin formulation, in bone marrow xenografts. Leuk Res. 2010 Sep;34(9):1214-23. PubMed PMID: 20138667. Epub 2010/02/09.eng.

  167. Bajelan E, Haeri A, Vali AM, Ostad SN, Dadashzadeh S. Co-delivery of doxorubicin and PSC 833 (Valspodar) by stealth nanoliposomes for efficient overcoming of multidrug resistance. J Pharm Pharm Sci. 2012;15(4):568-82. PubMed PMID: 23106959. Epub 2012/10/31.eng.

  168. Riviere K, Kieler-Ferguson HM, Jerger K, Szoka Jr FC. Anti-tumor activity of liposoJme encapsulated fluoroorotic acid as a single agent and in combination with liposome irinotecan. J Control Release. 2011 Aug 10;153(3):288-96. PubMed PMID: 21600250. Pubmed Central PMCID: PMC3148779. Epub 2011/05/24.eng.

  169. Tardi P, Johnstone S, Harasym N, Xie S, Harasym T, Zisman N, Harvie P, Bermudes D, Mayer L. In vivo maintenance of synergistic cytarabine: Daunorubicin ratios greatly enhances therapeutic efficacy. Leuk Res. 2009 Jan;33(1):129-39. PubMed PMID: 18676016. Epub 2008/08/05.eng.

  170. Jain A, Hurkat P, Jain SK. Development of liposomes using formulation by design: Basics to recent advances. Chem Phys Lipids. 2019;224:104764. https://doi.org/10.1016/j.chemphyslip.2019.03.017.

  171. Cox D, Aoki T, Seki J, Motoyama Y, Yoshida K. The pharmacology of the integrins. Med Res Rev. 1994;14(2):195-228.

  172. Avraamides CJ, Garmy-Susini B, Varner JA. Integrins in angiogenesis and lymphangiogenesis. Nature Rev Cancer. 2008;8(8):604-17.

  173. Abu Lila AS, Ishida T, Kiwada H. Recent advances in tumor vasculature targeting using liposomal drug delivery systems. Exper Opin Drug Deliv. 2009 Dec;6(12):1297-309. PubMed PMID: 19780711. Epub 2009/09/29.eng.

  174. Danhier F, Le Breton A, Preat V. RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol Pharm. 2012 Nov 5;9(11):2961-73. PubMed PMID: 22967287.

  175. Su W, Wang H, Wang S, Liao Z, Kang S, Peng Y, Han L, Chang J. PEG/RGD-modified magnetic polymeric liposomes for controlled drug release and tumor cell targeting. Int J Pharm. 2012 Apr 15;426(1-2):170-81. PubMed PMID: 22266537. Epub 2012/01/24.eng.

  176. Shuyan M, Bo S, Wei L, Yongmei D, Liang T, Wei Z, Yin S, Heyan L, Caicun Z. Enhanced antitumor effect of novel dual-targeted paclitaxel liposomes. Nanotechnology. 2010;21(41):415103.

  177. Kibria G, Hatakeyama H, Ohga N, Hida K, Harashima H. Dual-ligand modification of PEGylated liposomes shows better cell selectivity and efficient gene delivery. J Control Release. 2011 Jul 30;153(2): 141-8. PubMed PMID: 21447361. Epub 2011/03/31.eng.

  178. Xiong X-B, Lavasanifar A. Traceable multifunctional micellar nanocarriers for cancer-targeted codelivery of MDR-1 siRNA and doxorubicin. ACS Nano. 2011;5(6):5202-13.

  179. Palmer DH, Young LS, Mautner V. Cancer gene-therapy: Clinical trials. Trends Biotechnol. 2006;24(2): 76-82.

  180. Xu H, Li Z, Si J. Nanocarriers in gene therapy:A review. J Biomed Nanotechnol. 2014;10(12):3483-507.

  181. Gandhi NS, Tekade RK, Chougule MB. Nanocarrier mediated delivery of siRNA/miRNA in combination with chemotherapeutic agents for cancer therapy: Current progress and advances. J Control Release. 2014;194:238-56.

  182. Tsouris V, Joo MK, Kim SH, Kwon IC, Won Y-Y. Nano carriers that enable co-delivery of chemotherapy and RNAi agents for treatment of drug-resistant cancers. Biotechnol Adv. 2014;32(5): 1037-50.

  183. Kang L, Gao Z, Huang W, Jin M, Wang Q. Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment. Acta Pharm Sinica B. 2015;5(3):169-75.

  184. Tabernero J, Shapiro GI, LoRusso PM, Cervantes A, Schwartz GK, Weiss GJ, Paz-Ares L, Cho DC, Infante JR, Alsina M. First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov. 2013;3(4):406-17.

  185. Gill KK, Kaddoumi A, Nazzal S. Mixed micelles of PEG 2000-DSPE and vitamin-E TPGS for concurrent delivery of paclitaxel and parthenolide: Enhanced chemosenstization and antitumor efficacy against non-small cell lung cancer (NSCLC) cell lines. Eur J Pharm Sci. 2012;46(1):64-71.

  186. Liu P, Wang H, Wang Q, Sun Y, Shen M, Zhu M, Wan Z, Duan Y. cRGD conjugated mPEG-PLGA-PLL nanoparticles for SGC-7901 gastric cancer cells-targeted delivery of fluorouracil. J Nanosci Nanotechnol. 2012;12(6):4467-71.

  187. Jain A, Tiwari A, Verma A, Jain SK. Vitamins for cancer prevention and treatment: An insight. Curr Mol Med. 2017;17(5):321-40.

  188. Graf N, Bielenberg DR, Kolishetti N, Muus C, Banyard J, Farokhzad OC, Lippard SJ. aVp3 integrin-targeted PLGA-PEG nanoparticles for enhanced anti-tumor efficacy of a Pt (IV) prodrug. ACS Nano. 2012;6(5):4530-9.

  189. Polyak D, Ryppa C, Eldar-Boock A, Ofek P, Many A, Licha K, Kratz F, Satchi-Fainaro R. Development of PEGylated doxorubicin-E-[c (RGDfK) 2] conjugate for integrin-targeted cancer therapy. Polym Adv Technol. 2011;22(1):103-13.

  190. Matsunaga T, Fukai F, Miura S, Nakane Y, Owaki T, Kodama H, Tanaka M, Nagaya T, Takimoto R, Takayama T. Combination therapy of an anticancer drug with the FNIII14 peptide of fibronectin effectively overcomes cell adhesion-mediated drug resistance of acute myelogenous leukemia. Leukemia. 2008;22(2):353-60.

  191. Huang HY, Kuo WT, Chou MJ, Huang YY. Co-delivery of anti-vascular endothelial growth factor siRNA and doxorubicin by multifunctional polymeric micelle for tumor growth suppression. J Biomed Mater Res A. 2011;97(3):330-8.

  192. Zhu C, Jung S, Luo S, Meng F, Zhu X, Park TG, Zhong Z. Co-delivery of siRNA and paclitaxel into cancer cells by biodegradable cationic micelles based on PDMAEMA-PCL-PDMAEMA triblock copolymers. Biomaterials. 2010;31(8):2408-16.

  193. Chang RS, Suh MS, Kim S, Shim G, Lee S, Han SS, Lee KE, Jeon H, Choi H-G, Choi Y. Cationic drug-derived nanoparticles for multifunctional delivery of anticancer siRNA. Biomaterials. 2011;32(36): 9785-95.

  194. Cao N, Cheng D, Zou S, Ai H, Gao J, Shuai X. The synergistic effect of hierarchical assemblies of siRNA and chemotherapeutic drugs co-delivered into hepatic cancer cells. Biomaterials. 2011;32(8): 2222-32.

  195. Kubowicz P, Zelaszczyk D, Pekala E. RNAi in clinical studies. Curr Med Chem. 2013;20(14):1801-16.

  196. Duhem C, Ries F, Dicato M. What does multidrug resistance (MDR) expression mean in the clinic? Oncologist. 1996;1(3):151-8.

ЦИТИРОВАНО В
  1. Saraf Shivani, Jain Ankit, Tiwari Ankita, Verma Amit, Panda Pritish Kumar, Jain Sanjay K., Advances in liposomal drug delivery to cancer: An overview, Journal of Drug Delivery Science and Technology, 56, 2020. Crossref

  2. Verma Amit, Tiwari Ankita, Panda Pritish Kumar, Saraf Shivani, Jain Ankit, Raikwar Sarjana, Bidla Pooja, Jain Sanjay K., Liposomes for Advanced Drug Delivery, in Advanced Biopolymeric Systems for Drug Delivery, 2020. Crossref

  3. Srivastava Aakanksha, Verma Amit, Saraf Shivani, Jain Ankit, Tiwari Ankita, Panda Pritish K., Jain Sanjay Kumar, Mucoadhesive gastroretentive microparticulate system for programmed delivery of famotidine and clarithromycin, Journal of Microencapsulation, 38, 3, 2021. Crossref

  4. Prajapati Shiv Kumar, Mishra Gaurav, Malaiya Akanksha, Jain Ankit, Mody Nishi, Raichur Ashok M., Antimicrobial Application Potential of Phytoconstituents from Turmeric and Garlic, in Bioactive Natural Products for Pharmaceutical Applications, 140, 2021. Crossref

  5. Jain Ankit, Tripathi Madhavi, Prajapati Shiv K., Raichur Ashok M., Biopolymer Matrix Composite for Drug Delivery Applications in Cancer, in Encyclopedia of Materials: Composites, 2021. Crossref

  6. Gorain Bapi, Al-Dhubiab Bandar E., Nair Anroop, Kesharwani Prashant, Pandey Manisha, Choudhury Hira, Multivesicular Liposome: A Lipid-based Drug Delivery System for Efficient Drug Delivery, Current Pharmaceutical Design, 27, 43, 2021. Crossref

  7. Jin Zhexiu, Yi Xue, Yang Jingjing, Zhou Meili, Wu Peifu, Yan Gen, Liposome-Coated Arsenic–Manganese Complex for Magnetic Resonance Imaging-Guided Synergistic Therapy Against Carcinoma, International Journal of Nanomedicine, Volume 16, 2021. Crossref

  8. Kothale Dhalendra, Verma Utsav, Dewangan Nagesh, Jana Partha, Jain Ankit, Jain Dharmendra, Alginate as Promising Natural Polymer for Pharmaceutical, Food, and Biomedical Applications, Current Drug Delivery, 17, 9, 2020. Crossref

  9. Saraf Shivani, Jain Ankit, Tiwari Ankita, Verma Amit, Jain Sanjay K., Engineered liposomes bearing camptothecin analogue for tumour targeting: in vitro and ex-vivo studies, Journal of Liposome Research, 31, 4, 2021. Crossref

  10. Raikwar Sarjana, Panda Pritish Kumar, Das Bidla Pooja, Saraf Shivani, Jain Ankit, Jain Sanjay K., Liposomal Delivery System, in Nanotechnology for Biomedical Applications, 2022. Crossref

  11. Verma Amit, Tiwari Ankita, Saraf Shivani, Panda Pritish Kumar, Jain Ankit, Jain Sanjay K., Protein and peptide delivery by chitosan systems, in Chitosan in Biomedical Applications, 2022. Crossref

  12. Xu Xiaoling, Tian Kewei, Lou Xuefang, Du Yongzhong, Potential of Ferritin-Based Platforms for Tumor Immunotherapy, Molecules, 27, 9, 2022. Crossref

  13. Raikwar Sarjana, Jain Ankit, Saraf Shivani, Bidla Pooja Das, Panda Pritish Kumar, Tiwari Ankita, Verma Amit, Jain Sanjay K., Opportunities in combinational chemo-immunotherapy for breast cancer using nanotechnology: an emerging landscape, Expert Opinion on Drug Delivery, 19, 3, 2022. Crossref

  14. Sharma Kanika, Kesharwani Payal, Prajapati Shiv Kumar, Jain Ankit, Jain Dolly, Mody Nishi, Sharma Swapnil, An Insight into Anticancer Bioactives from Punica granatum (Pomegranate), Anti-Cancer Agents in Medicinal Chemistry, 22, 4, 2022. Crossref

  15. Yu Siting, Wang Yang, He Ping, Shao Bianfei, Liu Fang, Xiang Zhongzheng, Yang Tian, Zeng Yuanyuan, He Tao, Ma Jiachun, Wang Xiran, Liu Lei, Effective Combinations of Immunotherapy and Radiotherapy for Cancer Treatment, Frontiers in Oncology, 12, 2022. Crossref

  16. Halevas Eleftherios G., Avgoulas Dimitrios I., Katsipis George, Pantazaki Anastasia A., Flavonoid-liposomes formulations: Physico-chemical characteristics, biological activities and therapeutic applications, European Journal of Medicinal Chemistry Reports, 5, 2022. Crossref

  17. Singh Rajesh, Deshmukh Rohitas, Carbon nanotube as an emerging theranostic tool for oncology, Journal of Drug Delivery Science and Technology, 74, 2022. Crossref

  18. Md Shadab, Alhakamy Nabil A., Sharma Priyanka, Ansari Mohammad Shahnawaze, Gorain Bapi, Nanocarrier-based co-delivery approaches of chemotherapeutics with natural P-glycoprotein inhibitors in the improvement of multidrug resistance cancer therapy, Journal of Drug Targeting, 30, 8, 2022. Crossref

  19. Lazaro-Carrillo Ana, Rodríguez-Amigo Beatriz, Mora Margarita, Sagristá Maria Lluïsa, Cañete Magdalena, Nonell Santi, Villanueva Angeles, Dual-Functionalized Nanoliposomes Achieve a Synergistic Chemo-Phototherapeutic Effect, International Journal of Molecular Sciences, 23, 21, 2022. Crossref

  20. Jampilek Josef, Kralova Katarina, Insights into Lipid-Based Delivery Nanosystems of Protein-Tyrosine Kinase Inhibitors for Cancer Therapy, Pharmaceutics, 14, 12, 2022. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain