Доступ предоставлен для: Guest
Critical Reviews™ in Therapeutic Drug Carrier Systems
Главный редактор: Mandip Sachdeva Singh (open in a new tab)

Выходит 6 номеров в год

ISSN Печать: 0743-4863

ISSN Онлайн: 2162-660X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 3.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.8 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.39 SJR: 0.42 SNIP: 0.89 CiteScore™:: 5.5 H-Index: 79

Indexed in

Nanoparticles as Adjuvants in Vaccine Delivery

Том 37, Выпуск 2, 2020, pp. 183-204
DOI: 10.1615/CritRevTherDrugCarrierSyst.2020033273
Get accessGet access

Краткое описание

Nanotechnology provides an excellent platform for the development of a new generation of vaccines. These are based on purified subunit proteins or polysaccharides, recombinant proteins, synthetic peptides, or nucleic acids. These types of vaccines may be insufficiently immunogenic, thus requiring adjuvants that augment their immunogenicity. Nanoparticles (NPs) can act as adjuvants for vaccines, hence they are referred to as a nano-adjuvant (NA). NPs can either encapsulate or adsorb the vaccine antigen or DNA in an appropriate formulation, thus increasing stability, cellular uptake, and immunogenicity. In addition, the biodistribution and systemic release of a vaccine can also be controlled by different NA formulations. This review provides an overview of the classification of NAs and also addresses factors influencing the stability, release, and immunogenicity of the formulated vaccine. A basic understanding of these factors enables a more rational design of NA formulations. Applications of NAs and key challenges in their formulation development are also discussed.

Ключевые слова: nanoadjuvant, immune system, nanotechnology
ЛИТЕРАТУРА
  1. Gulce-Iz S, Saglam-Metiner P. Current state of the art in DNA vaccine delivery and molecular adjuvants: Bcl-xL anti-apoptotic protein as a molecular adjuvant. In: Tyagi R, Bisen PS, editors. Immune response activation and immunomodulation. London: IntechOpen; 2019. p. 1-16.

  2. Gupta A, Das S, Schanen B, Seal S. Adjuvants in micro- to nanoscale: Current state and future direction. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8(1):61-84.

  3. Zhang C, Maruggi G, Shan H, Li J. Advances in mRNA vaccines for infectious diseases. Front Immunol. 2019;10:594.

  4. Zhu M, Wang R, Nie G. Applications of nanomaterials as vaccine adjuvants. Hum Vaccin Immunother. 2014;10(9):2761-74.

  5. Akagi T, Baba M, Akashi M. Biodegradable nanoparticles as vaccine adjuvants and delivery systems: Regulation of immune responses by nanoparticle-based vaccine. Adv Polymer Sci. 2012;247:31-64.

  6. Moghimi SM, Andersen AJ, Ahmadvand D, Wibroe PP, Andresen TL, Hunter AC. Material properties in complement activation. Adv Drug Deliv Rev. 2011;63:1000-7.

  7. Ho KC, Tsai PJ, Lin YS, Chen YC. Using biofunctionalized nanoparticles to probe pathogenic bacteria. Anal Chem. 2004;76:7162-8.

  8. Yoo JW, Doshi N, Mitragotri S. Adaptive micro and nanoparticles: Temporal control over carrier properties to facilitate drug delivery. Adv Drug Deliv Rev. 2011;63(14-15):1247-56.

  9. Singh SK, Stephani J, Schaefer M, Kalay H, Garcia-Vallejo JJ, den Haan J, Saeland E, Sparwasser T, van Kooyk Y. Targeting glycan modified OVA to murine DC-SIGN transgenic dendritic cells enhances MHC class I and II presentation. Mol Immuno. 2009;47:164-74.

  10. Da Costa Martins R, Gamazo C, Sanchez-Martinez M, Barberan M, Penuelas I, Irache JM. Conjunctival vaccination against Brucella ovis in mice with mannosylated nanoparticles. J Control Rel. 2012;162(3):553-60.

  11. Dewangan HK, Pandey T, Singh S. Nanovaccine for immunotherapy and reduced hepatitis B virus in humanized mice. Artif Cells Nanomed Biotechnol. 2018;46(8):2033-42. doi: 10.1080/21691401.2017.1408118.

  12. Dewangan HK, Pandey T, Maurya L, Singh S. Rational design and evaluation of HBsAg polymeric nanoparticles as antigen delivery carriers. Int J Biol Macromol. 2018;1(111):804-12.

  13. Pawar D, Mangal S, Goswami R, Jaganathan KS. Development and characterization of surface modified PLGA nanoparticles for nasal vaccine delivery: Effect of mucoadhesive coating on antigen uptake and immune adjuvant activity. Eur J Pharm Biopharm. 2013;85(3 Pt A):550-9.

  14. Zhang Z, Tongchusak S, Mizukami Y, Kang YJ, Ioji T, Touma M, Reinhold B, Keskin DB, Reinherz EL, Sasada T. Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery. Biomaterials. 2011;32(14):3666-78.

  15. Gonzalez-Aramundiz JV, Presas E, Dalmau-Mena I, Martinez-Pulgarin S, Alonso C, Escribano JM, Alonso MJ, Csaba NS. Rational design of protamine nanocapsules as antigen delivery carriers. J Control Release. 2017;245:62-9.

  16. Cui Z, Mumper RJ. Microparticles and nanoparticles as delivery systems for DNA vaccines. Crit Rev Ther Drug Carrier Syst. 2003;20(2-3):103-37.

  17. Shangguan J, Li Y, He D, He X, Wang K, Zou Z, Shi H. A combination of positive dielectrophoresis driven on-line enrichment and aptamer-fluorescent silica nanoparticle label for rapid and sensitive detection of Staphylococcus aureus. Analyst. 2015;140:4489-97.

  18. Tsourkas A, Hofstetter O, Hofstetter H, Weissleder R, Josephson L. Magnetic relaxation switch immunosensors detect enantiomeric impurities. Angew Chem Int Ed Engl. 2004;43:2395-9.

  19. Mishra H, Mishra D, Mishra PK, Nahar M, Dubey V, Jain NK. Evaluation of solid lipid nanoparticles as carriers for delivery of hepatitis B surface antigen for vaccination using subcutaneous route. J Pharm Pharm Sci. 2010;13(4):495-509.

  20. Bohara RA, Pawar SH. Innovative developments in bacterial detection with magnetic nanoparticles. Appl Biochem Biotechnol. 2015;176:1044-58.

  21. Lee Y, Lee SH, Kim JS, Maruyama A, Chen X, Park TG. Controlled synthesis of PEI-coated gold nanoparticles using reductive catechol chemistry for siRNA delivery. J Control Release. 2011;155(1):3-10.

  22. Krpetic Z, Saleemi S, Prior IA, See V, Qureshi R, Brust M. Negotiation of intracellular membrane barriers by TAT-modified gold nanoparticles. ACS Nano. 2011;5(6):5195-201.

  23. Mercuri LP, Carvalho LV, Lima FA, Quayle C, Fantini MCA, Tanaka GS, Cabrera WH, Furtado MFD, Tambourgi DV, Matos JR, Jaroniec M, Sant'Anna OA. Ordered mesoporous silica SBA-15: A new effective adjuvant to induce antibody response. Small. 2006;2(2):254-6.

  24. Wang T, Jiang H, Zhao Q, Wang S, Zou M, Cheng G. Enhanced mucosal and systemic immune responses obtained by porous silica nanoparticles used as an oral vaccine adjuvant: Effect of silica architecture on immunological properties. Int J Pharm. 2012;436(1-2):351-8.

  25. Mody KT, Popat A, Mahony D, Cavallaro AS, Yu C, Mitter N. Mesoporous silica nanoparticles as antigen carriers and adjuvants for vaccine delivery. Nanoscale, 2013;5:5167-79.

  26. Tao W, Ziemer KS, Gill HS. Gold nanoparticle-M2e conjugate coformulated with CpG induces protective immunity against influenza A virus. Nanomedicine (Lond). 2014;9(2):237-51.

  27. Pusic K, Aguilar Z, McLoughlin J, Kobuch S, Xu H, Tsang M, Wang A, Hui G. Iron oxide nanoparticles as a clinically acceptable delivery platform for a recombinant blood-stage human malaria vaccine. FASEB J. 2013;27:1153-66.

  28. Wadhwa S, Jain A, Woodward JG, Mumper RJ. Lipid nanocapsule as vaccine carriers for His-tagged proteins: Evaluation of antigen-specific immune responses to HIV I His-Gag p41 and systemic inflammatory responses. Eur J Pharm Biopharm. 2012;80:315-22.

  29. Fischer NO, Infante E, Ishikawa T, Blanchette CD, Bourne N, Hoeprich PD, Mason PW. Conjugation to nickel-chelating nanolipoprotein particles increases the potency and efficacy of subunit vaccines to prevent West Nile encephalitis. Bioconjug Chem. 2010;21:1018-22.

  30. Roy P, Noad R. Virus-like particles as a vaccine delivery system: Myths and facts. Adv Exp Med Biol. 2009;655:145-58.

  31. Amador-Molina A, Hernandez-Valencia JF, Lamoyi E, Contreras-Paredes A, Lizano M. Role of innate immunity against human papillomavirus (HPV) infections and effect of adjuvants in promoting specific immune response. Viruses. 2013;5:2624-42.

  32. Galarza JM, Latham T, Cupo A. Virus-like particle (VLP) vaccine conferred complete protection against a lethal influenza virus challenge. Viral Immunol. 2005;18(1):244-51.

  33. Kreijtz JHCM, Fouchier RAM, Rimmelzwaan GF. Immune responses to influenza virus infection. Virus Res. 2011;162(1-2):19-30.

  34. Yang L, Wei C, Yang Y, Tong Y, Yang S, Peng L, Zuo Q, Zhuang Y, Cheng P, Zeng H, Zou Q, Son H. Immune response effects of diverse vaccine antigen attachment ways based on the self-made nanoemulsion adjuvant in systemic MRSA infection. RSC Adv. 2018;8:10425-36.

  35. Yang Y, Chen L, Sun H, Guo H, Song Z, You Y, Yang L, Tong Y, Gao J, Zeng H, Yang W, Zou Q. Epitope-loaded nanoemulsion delivery system with ability of extending antigen release elicits potent Th1 response for intranasal vaccine against Helicobacter pylori. J Nanobiotechnol. 2019;17(1):6.

  36. Bielinska AU, Makidon PE, Janczak, KW, Blanco LP, Swanson B, Smith DM, Pham T, Szabo Z, Kukowska-Latallo JF, Baker JR Jr. Distinct pathways of humoral and cellular immunity induced with the mucosal administration of a nanoemulsion adjuvant. J Immunol. 2014;192(6):2722-33.

  37. Hu KF, Elvander M, Merza M, Akerblom L, Brandenburg A, Morein B. The immunostimulationg complex (ISCOM) is an efficient mucosal delivery system for respiratory syncytial virus (RSV) envelope antigens inducing high local and systemic antibody response. Clin Exp Immunol. 1998;113(2):235-43.

  38. Flanary S, Hoffman AS, Stayton PS. Antigen delivery with poly(propylacrylic acid) conjugation enhances MHC-1 presentation and T-cell activation. Bioconjug Chem. 2009;20(2):241-8.

  39. Woodrow KA, Bennett KM, Lo DD. Mucosal vaccine design and delivery. Annu Rev Biomed Eng. 2012;14(1):17-46.

  40. Gregory AE, Titball R, Williamson D. Vaccine delivery using nanoparticles. Front Cell Infect Microbiol. 2013;3:13.

  41. Petrovsky N. Comparative safety of vaccine adjuvants: A summary of current evidence and future needs. Drug Saf. 2015;38(11):1059-74.

  42. Bolhassani A, Javanzad S, Saleh T, Hashemi M, Aghasadeghi MR, Sadat SM. Polymeric nanoparticles: Potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum Vaccin Immunother. 2014;10(2):321-33.

  43. Thomas C, Rawat A, Hope-Weeks L, Ahsan F. Aerosolized PLA and PLGA nanoparticles enhance humoral, mucosal and cytokine responses to hepatitis B vaccine. Mol Pharm. 2011;8(2):405-15.

  44. Manish M, Rahi A, Kaur M, Bhatnagar R, Singh S. A single-dose PLGA encapsulated protective antigen domain 4 nanoformulation protects mice against Bacillus anthracis spore challenge. PLoS One. 2013;8(4):e61885.

  45. Nochi T, Yuki Y, Takahashi H, Sawada S, Mejima M, Kohda T, Harada N, Kong IG, Sato A, Kataoka N, Tokuhara D, Kurokawa S, Takahashi Y, Tsukada H, Kozaki S, Akiyoshi K, Kiyono H. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nat Mater. 2010;9(7):572-8.

  46. Massich MD, Giljohann DA, Schmucker AL, Patel PC, Mirkin C. Cellular response of polyvalent oligonucleotide-gold nanoparticle conjugates. ACS Nano. 2010;4(10):5641-6.

  47. Peek LJ, Middaugh CR, Berkland C. Nanotechnology in vaccine delivery. Adv Drug Deliv Rev. 2008;60(8):915-28.

  48. Maughan CN, Preston SG, Williams GR. Particulate inorganic adjuvants: Recent developments and future outlook. J Pharm Pharmacol. 2015;65:426-49.

  49. Klumpp C, Kostarelos K, Prato M, Bianco A. Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. BBA-Biomembranes. 2006;1758:404-12.

  50. Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. 2015;10:975-99.

  51. Laouini A, Jaafar-Maalej C, Limayem-Blouza I, Sfar S, Charcosset C, Fessi H. Preparation, characterization and applications of liposomes: State of the art. J Colloid Sci Biotechnol. 2012;1(2):147-68.

  52. Gregoriadis G, Saffie R, Hart SL. High yield incorporation of plasmid DNA within liposomes: Effect on DNA integrity and transfection efficiency. J Drug Target. 1996;3:469-75.

  53. Sun X, Zhang Z. Optimizing the novel formulation of liposome-polycation-DNA complexes (LPD) by central composite design. Arch Pharm Res. 2004;27(7):797-805.

  54. Pattni BS, Chupin VV, Torchilin VP. New developments in liposomal drug delivery. Chem Rev. 2015;115:10938-66.

  55. Herzog C, Hartmann K, Kunzi V, Kursteiner O, Mischler R, Lazar H, Gluck R. Eleven years of Inflexal<sup>&#174;</sup> V-a virosomal adjuvanted influenza vaccine. Vaccine. 2009;27:4381-7.

  56. Bovier PA. Epaxal: A virosomal vaccine to prevent hepatitis A infection. Expert Rev Vaccines. 2008;7(8):1141-50.

  57. Sanders MT, Brown LE, Deliyannis G, Pearse MJ. ISCOM-based vaccines: The second decade. Immunol Cell Biol. 2005;83:119-28.

  58. Morein B, Sundquist B, Hoglund S, Dalsgaard K, Osterhaus A. ISCOM, a novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature. 1984;308(5958):457-60.

  59. Slupetzky K, Gambhira R, Culp TD, Shafti-Keramat S, Schellenbacher C, Christensen ND, Roden RBS, Kirnbauer R. A papillomavirus-like particle (VLP) vaccine displaying HPV16 L2 epitopes induces cross-neutralizing antibodies to HPV11. Vaccine. 2007;25(11):2001-10.

  60. Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech. 2015;5(2):123-7.

  61. Chuan YP, Zeng BY, O'Sullivan B, Thomas R, Middelberg APJ. Co-delivery of antigen and a lipophilic anti-inflammatory drug to cells via a tailorable nanocarrier emulsion. J Colloid Interface Sci. 2012;368(1):616-24.

  62. Oliveira GA, Wetzel K, Calvo-Calle JM, Nussenzweig R, Schmidt A, Birkett A, Dubovsky F, Tierney E, Gleiter CH, Boehmer G, Luty AJF, Ramharter M, Thornton GB, Kremsner PG, Nardin EH. Safety and enhanced immunogenicity of a hepatitis B core particle Plasmodium falciparum malaria vaccine formulated in adjuvant Montanide ISA 720 in a phase I trial. Infect Immun. 2005;73(6):3587-97.

  63. Huang X, Wang X, Zhang J, Xia N, Zhao Q. Escherichia coli-derived virus-like particles in vaccine development. NPJ Vaccines. 2017;2:3.

  64. Hickey AJ, Garmise RJ. Dry powder nasal vaccines as an alternative to needle-based delivery. Crit Rev Ther Drug Carrier Syst. 2009;26(1):1-27.

  65. Cambi A, Lidke DS, Arndt-Jovin DJ, Figdor CG, Jovin TM. Ligand-conjugated quantum dots monitor antigen uptake and processing by dendritic cells. Nano Lett. 2007;7(4):970-7.

  66. Fife KH, Meng TC, Ferris DG, Liu P. Effect of resiquimod 0.01&#37; gel on lesion healing and viral shedding when applied to genital herpes lesions. Antimicrob Agents Chemother. 2008;52(2):477-82.

  67. Awate S, Babiuk LA, Mutwiri G. Mechanisms of action of adjuvants. Front Immunol. 2013;4:1-14.

  68. FitzGerald D, Mrsny RJ. New approaches to antigen delivery. Crit Rev Ther Drug Carrier Syst. 2002;17(3):72-84.

  69. Dockrell DH, Kinghorn GR. Imiquimod and resiquimod as novel immunomodulators. J Antimicrob Chemo. 2001;48(6):751-5.

  70. Olive C. Pattern recognition receptors: Sentinels in innate immunity and targets of new vaccine adjuvants. Expert Rev Vaccines. 2012;11(2):237-56.

  71. Smith DM, Simon JK, Baker JR Jr. Applications of nanotechnology for immunology. Nat Rev Immunol. 2013;13(8):592-605.

  72. Alpar HO, Bramwell VW. Current status of DNA vaccines and their route of administration. Crit Rev Ther Drug Carrier Syst. 2002;19(4-5):1-84.

  73. Brookes RH, Hakimi J, Ha Y, Aboutorabian S, Ausar SF, Hasija M, Smith SG, Todryk SM, Dockrell HM, Rahman N. Screening vaccine formulations for biological activity using fresh human whole blood. Hum Vaccin Immunother. 2014;10(4):1129-35.

  74. Toprani VM, Hickey JM, Sahni N, Toth RT 4th, Robertson GA, Middaugh CR, Joshi SB, Volkin DB. Structural characterization and physicochemical stability profile of a double mutant heat labile toxin protein based adjuvant. J Pharm Sci. 2017;106(12):3474-85.

  75. Qasim M, Lim DJ, Park H, Na D. Nanotechnology for diagnosis and treatment of infectious diseases. J Nanosci Nanotechnol. 2014;14:7374-87.

  76. Hauck TS, Giri S, Gao Y, Chan WCW. Nanotechnology diagnostics for infectious diseases prevalent in developing countries. Adv Drug Deliv Rev. 2010;62:438-48.

  77. Blecher K, Nasir A, Friedman A. The growing role of nanotechnology in combating infectious disease. Virulence. 2011;2:395-401.

  78. Duan L, Wang Y, Li SS, Wan Z, Zhai J. Rapid and simultaneous detection of human hepatitis B virus and hepatitis C virus antibodies based on a protein chip assay using nano-gold immunological amplification and silver staining method. BMC Infect Dis. 2005;5:53.

  79. Lin YS, Tsai PJ, Weng MF, Chen YC. Affinity capture using vancomycin-bound magnetic nanoparticles for the MALDI-MS analysis of bacteria. Anal Chem. 2005;77:1753-60.

  80. Gopal J, Muthu M, Chun SC, Wu HF. State-of-the-art nanoplatform-integrated MALDI-MS impacting resolutions in urinary proteomics. Proteomics Clin Appl. 2015;9:469-81.

  81. Azzazy HME, Mansour MMH, Kazmierczak SC. Nanodiagnostics: A new frontier for clinical laboratory medicine. Clin Chem. 2006;52:1238-46.

  82. Copland MJ, Baird MA, Rades T, McKenzie JL, Becker B, Reck F, Tyler PC, Davies NM. Liposomal delivery of antigen to human dendritic cells. Vaccine. 2003;21:883-90.

  83. Hamdy S, Haddadi A, Shayeganpour A, Samuel J, Lavasanifar A. Activation of antigen-specific T cell-responses by mannan-decorated PLGA nanoparticles. Pharm Res. 2011;28(9):2288-301.

  84. Singh SK, Stephani J, Schaefer M, Kalay H, Garcia-Vallejo JJ, den Haan J, Saeland E, Sparwasser T, van Kooyk Y. Targeting glycan modified OVA to murine DC-SIGN transgenic dendritic cells enhances MHC class I and II presentation. Mol Immunol. 2009;47:164-74.

  85. Lee Y, Lee SH, Kim JS, Maruyama A, Chen X, Park TG. Controlled synthesis of PEI-coated gold nanoparticles using reductive catechol chemistry for siRNA delivery. J Control Release. 2011;155(1):3-10.

  86. Mahony D, Cavallaro AS, Stahr F, Mahony TJ, Qiao SZ, Mitter N. Mesoporous silica nanoparticles act as a self-adjuvant for ovalbumin model antigen in mice. Small. 2013;9(18):3138-46.

  87. Dawson JI, Kanczler JM, Yang XB, Attard GS, Oreffo ROC. Clay gels for the delivery of regenerative microenvironments. Adv Mater. 2011;23:3304-8.

  88. Min J, Braatz RD, Hammond PT. Tunable staged release of therapeutics from layer-by-layer coatings with clay interlayer barrier. Biomaterials. 2014;35:2507-17.

  89. Chen W, Zhang B, Mahony T, Gu W, Rolfe B, Xu ZP. Efficient and durable vaccine against intimin &#946; of diarrheagenic E. coli induced by clay nanoparticles. Small. 2016;12:1627-39.

  90. Varin A, Gordon S. Alternative activation of macrophages: Immune function and cellular biology. Immunobiology. 2009;214:630-41.

  91. Duque GA, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5:491.

  92. Joshi MD, Unger WJ, Storm G, van Kooyk Y, Mastrobattista E. Targeting tumor antigens to dendritic cells using particulate carriers. J Control Release. 2012;161:25-37.

  93. Li N, Peng LH, Chen X, Zhang TY, Shao GF, Liang WQ, Gao JQ. Antigen-loaded nanocarriers enhance the migration of stimulated Langerhans cells to draining lymph nodes and induce effective transcutaneous immunization. Nanomedicine. 2014;10:215-23.

  94. Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J. 2012;14(2)281-95.

  95. Emerich DF, Thanos CG. The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomol Eng. 2006;23(4):171-4.

  96. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V. PLGA-based nanoparticles: An overview of biomedical applications. J Control Release. 2012;161(2):505-22.

  97. Singh M, O'Hagan DT. Recent advances in vaccine adjuvants. Pharm Res. 2002;19(6):715-28.

ЦИТИРОВАНО В
  1. Liu Zonghua, Huang Linghong, Xue Wei, pH-responsive vaccine delivery systems for improving cellular immunity, Progress in Natural Science: Materials International, 30, 5, 2020. Crossref

  2. Niculescu Adelina-Gabriela, Grumezescu Alexandru Mihai, Polymer-Based Nanosystems—A Versatile Delivery Approach, Materials, 14, 22, 2021. Crossref

  3. Kardani Kimia, Bolhassani Azam, Bhattacharjya Surajit, Exploring novel and potent cell penetrating peptides in the proteome of SARS-COV-2 using bioinformatics approaches, PLOS ONE, 16, 2, 2021. Crossref

  4. Nooraei Saghi, Bahrulolum Howra, Hoseini Zakieh Sadat, Katalani Camellia, Hajizade Abbas, Easton Andrew J., Ahmadian Gholamreza, Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers, Journal of Nanobiotechnology, 19, 1, 2021. Crossref

  5. Raoufi Ehsan, Bahramimeimandi Bahar, Salehi-Shadkami M., Chaosri Patcharida, Mozafari M. R., Methodical Design of Viral Vaccines Based on Avant-Garde Nanocarriers: A Multi-Domain Narrative Review, Biomedicines, 9, 5, 2021. Crossref

  6. Guo Zhong, Li Sha, Qu Yangchun, Lu Jie, Xue Wei, Yu Xifei, Liu Zonghua, Bio-membrane adhesive poly(choline phosphate l-glutamate)-based nanoparticles as vaccine delivery systems for cancer immunotherapy, Chemical Engineering Journal, 417, 2021. Crossref

  7. Dewangan Hitesh Kumar, Tomar Suman, Nanovaccine for transdermal delivery system, Journal of Drug Delivery Science and Technology, 67, 2022. Crossref

  8. Allahyari Mojgan, PLGA Nanoparticles as an Efficient Platform in Protein Vaccines Against Toxoplasma gondii, Acta Parasitologica, 67, 2, 2022. Crossref

  9. Tan Jia, Ding Binbin, Teng Bo, Ma Ping'an, Lin Jun, Understanding Structure–Function Relationships of Nanoadjuvants for Enhanced Cancer Vaccine Efficacy, Advanced Functional Materials, 32, 16, 2022. Crossref

  10. Dewangan Hitesh Kumar, Different Approaches for Nanovaccine Formulation and Characterization, IOP Conference Series: Materials Science and Engineering, 1116, 1, 2021. Crossref

  11. Nazarizadeh Ali, Staudacher Alexander H., Wittwer Nicole L., Turnbull Tyron, Brown Michael P., Kempson Ivan, Aluminium Nanoparticles as Efficient Adjuvants Compared to Their Microparticle Counterparts: Current Progress and Perspectives, International Journal of Molecular Sciences, 23, 9, 2022. Crossref

  12. Raghuvanshi Akash, Shah Kamal, Dewangan Hitesh Kumar, Ethosome as antigen delivery carrier: optimisation, evaluation and induction of immunological response via nasal route against hepatitis B, Journal of Microencapsulation, 39, 4, 2022. Crossref

  13. Dewangan Hitesh Kumar, The Emerging Role of Nanosuspensions for Drug Delivery and Stability, Current Nanomedicine, 11, 4, 2021. Crossref

  14. Azuar Armira, Madge Harrison Y. R., Boer Jennifer C., Gonzalez Cruz Jazmina L., Wang Jingwen, Khalil Zeinab G., Deceneux Cyril, Goodchild Georgia, Yang Jieru, Koirala Prashamsa, Hussein Waleed M., Capon Robert J., Plebanski Magdalena, Toth Istvan, Skwarczynski Mariusz, Poly(hydrophobic Amino Acids) and Liposomes for Delivery of Vaccine against Group A Streptococcus, Vaccines, 10, 8, 2022. Crossref

  15. Tomar Suman, Yadav Rakesh Kumar, Shah Kamal, Dewangan Hitesh Kumar, A comprehensive review on carrier mediated nose to brain targeting: emphasis on molecular targets, current trends, future prospects, and challenges, International Journal of Polymeric Materials and Polymeric Biomaterials, 2022. Crossref

  16. Chen Linlin, Guo Xiangli, Wang Lidan, Geng Jingping, Wu Jiao, Hu Bin, Wang Tao, Li Jason, Liu Changbai, Wang Hu, In silico identification and experimental validation of cellular uptake by a new cell penetrating peptide P1 derived from MARCKS, Drug Delivery, 28, 1, 2021. Crossref

  17. Mishra Ashwini Kumar, Pandey Mukesh, Dewangan Hitesh Kumar, SL Neha, Sahoo Pravat Kumar, A Comprehensive Review on Liver Targeting: Emphasis on Nanotechnology- based Molecular Targets and Receptors Mediated Approaches, Current Drug Targets, 23, 15, 2022. Crossref

10378 Просмотры статей 129 Загрузка статей Метрики
10378 ПРОСМОТРЫ 129 ЗАГРУЗКИ 17 Crossref ЦИТАТЫ Google
Scholar
ЦИТАТЫ

Статьи с похожим содержанием:

Peptide and Protein Delivery Using New Drug Delivery Systems Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.30, 2013, issue 4
Ashish Jain, Satish Shilpi, Pooja Hurkat, Aviral Jain, Arvind Gulbake, Sanjay Kumar Jain
Lipid-Based Cochleates: A Promising Formulation Platform for Oral and Parenteral Delivery of Therapeutic Agents Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.24, 2007, issue 1
Emilio Squillante, III, Kwon H. Kim, Ravi Rao
Cracking the Junction: Update on the Progress of Gastrointestinal Absorption Enhancement in the Delivery of Poorly Absorbed Drugs Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.25, 2008, issue 2
David J. Brayden, Siobhan McClean, Sam Maher, Linda Feighery
Nanoparticle-Loaded Oral Fast-Dissolving Film: New Realistic Approach of Prospective Generation in Drug Delivery - A Review Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.38, 2021, issue 1
Ruckmani Kandasamy, Selvakumar Muruganantham, Shanmugarathinam Alagarsamy
Hybrid Vesicular Nanosystems Based on Lipids and Polymers Applied in Therapy, Theranostics, and Cosmetics Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.37, 2020, issue 3
Elisabete P. Santos, Cristal S. C. Pinto, Natália Ruben Castro, Claudia Regina E. Mansur
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain