Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Critical Reviews™ in Therapeutic Drug Carrier Systems
Импакт фактор: 2.9 5-летний Импакт фактор: 3.72 SJR: 0.736 SNIP: 0.818 CiteScore™: 4.6

ISSN Печать: 0743-4863
ISSN Онлайн: 2162-660X

Выпуски:
Том 37, 2020 Том 36, 2019 Том 35, 2018 Том 34, 2017 Том 33, 2016 Том 32, 2015 Том 31, 2014 Том 30, 2013 Том 29, 2012 Том 28, 2011 Том 27, 2010 Том 26, 2009 Том 25, 2008 Том 24, 2007 Том 23, 2006 Том 22, 2005 Том 21, 2004 Том 20, 2003 Том 19, 2002 Том 18, 2001 Том 17, 2000 Том 16, 1999 Том 15, 1998 Том 14, 1997 Том 13, 1996 Том 12, 1995

Critical Reviews™ in Therapeutic Drug Carrier Systems

DOI: 10.1615/CritRevTherDrugCarrierSyst.2016016624
pages 433-488

Review Article: Fabricated Microparticles: An Innovative Method to Minimize the Side Effects of NSAIDs in Arthritis

Shaivad Shabee Hulhasan Abadi
Department of Pharmaceutics, JSS College of Pharmacy, Jagadguru Sri Shivarathreeshwara University, Sri Shivarathreeshwara Nagar, Mysuru, India
Afrasim Moin
Department of Pharmaceutics, University of Hail, Hail, Saudi Arabia
Gangadharappa Hosahalli Veerabhadrappa
Department of Pharmaceutics, JSS College of Pharmacy, Jagadguru Sri Shivarathreeshwara University, Sri Shivarathreeshwara Nagar, Mysuru, India

Краткое описание

Microparticles are polymeric bodies ranging 1−1000 µm that constitute a variety of forms such as microcapsules, microspheres, microcages, microshells, microrods, biosensors microparticles, radiolabeled microparticles, and so forth. This review focuses on general microparticles, mainly microcapsules and microspheres. Nonsteriodal anti-inflammatory drugs (NSAIDs) are one of the mostcommonly prescribed medications in the world. Most of the NSAIDs available have severe side effects. With increased awareness of NSAID-induced gastrointestinal (GI) side effects, safety has become a priority in treatment of arthritis and other inflammatory diseases with NSAIDs. A trend in NSAID development has been to improve therapeutic efficacy while reducing the severity of GI side effects by altering dosage through modified release to optimize drug delivery. One such approach is the use of fabricated microparticles such as microcapsules and microspheres as carriers of drugs. Microparticles provide delivery of macromolecules and micromolecules via different routes and effectively control the release profile of such drugs. Microcapsules and microspheres are compatible with most natural and synthetic polymers and can be used for several routes of administration, including parenteral, oral, nasal, intra-ocular, topical, and the like. Because of greater stability and multiple manufacturing techniques, microspheres and microcapsules are preferred as drug carriers over other colloidal drug delivery systems. Microparticles provide effective protection of the encapsulated agent against degradation by enzymatic activities, controlled and confined delivery of drugs from a few hours to months, and ingenious administration compared to alternative forms of controlled-release parenteral dosages, such as macro-sized implants. This comprehensive overview of fabricated microparticles describes microencapsulation technologies to produce microparticles for targeted therapy of arthritis and other inflammatory diseases which provide constant and prolonged therapeutic effects that reduce dosing frequency and thereby minimize potential adverse effects of NSAIDs such as GI irritation and insufficient patient compliance. The present review describes the latest developments in microparticulate drug delivery systems and the best alternatives for safe and effective microcapsular systems in a controlled manner for the delivery of NSAIDs.


Articles with similar content:

Transcending the Skin Barrier to Deliver Peptides and Proteins Using Active Technologies
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.29, 2012, issue 4
Haripriya Kalluri, Anushree Herwadkar, Neha Singh, Ajay K. Banga, Advait Badkar
Drug Delivery to the Nail: Therapeutic Options and Challenges for Onychomycosis
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.31, 2014, issue 6
Bhavesh S. Barot, Pragna K. Shelat, Hetal K. Patel, Dharmik M. Mehta, Punit B. Parejiya
Long-Acting Injectables: Current Perspectives and Future Promise
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.36, 2019, issue 2
Komal Chaudhary, Mayur M. Patel, Priti J. Mehta
Drug Targeting by Surface Cationization
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.17, 2000, issue 5
Susan Moody Haupt, Tareq Taha Jubeh, Abraham Rubinstein, Sigal Blau
Biodegradable Microspheres for Parenteral Delivery
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.22, 2005, issue 6
Vivek Ranjan Sinha, A. Trehan