Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Critical Reviews™ in Therapeutic Drug Carrier Systems
Импакт фактор: 2.9 5-летний Импакт фактор: 3.72 SJR: 0.736 SNIP: 0.818 CiteScore™: 4.6

ISSN Печать: 0743-4863
ISSN Онлайн: 2162-660X

Выпуски:
Том 37, 2020 Том 36, 2019 Том 35, 2018 Том 34, 2017 Том 33, 2016 Том 32, 2015 Том 31, 2014 Том 30, 2013 Том 29, 2012 Том 28, 2011 Том 27, 2010 Том 26, 2009 Том 25, 2008 Том 24, 2007 Том 23, 2006 Том 22, 2005 Том 21, 2004 Том 20, 2003 Том 19, 2002 Том 18, 2001 Том 17, 2000 Том 16, 1999 Том 15, 1998 Том 14, 1997 Том 13, 1996 Том 12, 1995

Critical Reviews™ in Therapeutic Drug Carrier Systems

DOI: 10.1615/CritRevTherDrugCarrierSyst.v23.i3.20
pages 205-258

Microneedles and Other Physical Methods for Overcoming the Stratum Corneum Barrier for Cutaneous Gene Therapy

Sion Coulman
Welsh School of Pharmacy, Cardiff University, Cardiff, CF10 3XF, UK
Chris Allender
Welsh School of Pharmacy, Cardiff University, Cardiff, CF10 3XF, UK
James Birchall
Lecturer in Drug Delivery Welsh School of Pharmacy, Cardiff University, Cardiff CF1 0 3XF, UK

Краткое описание

The outermost layer of skin, the epidermis, has developed formidable physical and immunological barrier properties that prevent infiltration of deleterious chemicals and pathogens. Consequently, transdermal delivery of medicaments is currently restricted to a limited number of low molecular weight drugs. As a corollary, there has been significant recent interest in providing strategies that disrupt or circumvent the principal physical barrier, the stratum corneum, for the efficient cutaneous delivery of macromolecular and nucleic acid based therapeutics. These strategies include: electrical methods, intradermal injection, follicular delivery, particle acceleration, laser ablation, radiofrequency ablation, microscission, and microneedles. The application of microfabricated microneedle arrays to skin creates transient pathways to enable transcutaneous delivery of drugs and macromolecules. Microneedle use is simple, pain-free, and causes no bleeding, with further advantages of convenient manufacture, distribution, and disposal. To date, microneedles have been shown to deliver drug, peptide, antigen, and DNA efficiently through skin. Robust and efficient microneedle designs and compositions can be inserted into the skin without fracture. Further progress in microneedle array design, microneedle application apparatus, and integrated formulation will confirm this methodology as a realistic clinical strategy for delivering a range of medicaments, including DNA, to and through skin.


Articles with similar content:

Formulation for Transfollicular Drug Administration: Some Recent Advances
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.14, 1997, issue 3
Brigitte Illel
Review Article: Fabricated Microparticles: An Innovative Method to Minimize the Side Effects of NSAIDs in Arthritis
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.33, 2016, issue 5
Shaivad Shabee Hulhasan Abadi, Afrasim Moin, Gangadharappa Hosahalli Veerabhadrappa
Formulation and Physiological Factors Influencing CNS Delivery upon Intranasal Administration
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.23, 2006, issue 4
Tushar Vyas, Mansoor M. Amiji, Sandip B. Tiwari
Multifunctional Matrices for Oral Peptide Delivery
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.18, 2001, issue 5
Andreas Bernkop-Schnurch, Greg Walker
Azo Chemistry and Its Potential for Colonic Delivery
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.23, 2006, issue 5
Yashwant Gupta, Anekant Jain, Sanjay Kumar Jain