Доступ предоставлен для: Guest
Critical Reviews™ in Therapeutic Drug Carrier Systems
Главный редактор: Mandip Sachdeva Singh (open in a new tab)

Выходит 6 номеров в год

ISSN Печать: 0743-4863

ISSN Онлайн: 2162-660X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 3.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.8 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.39 SJR: 0.42 SNIP: 0.89 CiteScore™:: 5.5 H-Index: 79

Indexed in

COVID-19 Infection: Targeting Possibilities for Treatment

Том 38, Выпуск 3, 2021, pp. 75-115
DOI: 10.1615/CritRevTherDrugCarrierSyst.2021035392
Get accessDownload

Краткое описание

The outbreak of novel coronavirus (nCoV) or severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in December 2019 in Wuhan, China, has posed an international public health emergency worldwide and forced people to be confined in their homes. This virus is of high-risk category and is declared a pandemic by the World Health Organization (WHO). The worldwide researchers and various health professionals are working together to determine the best way to stop its spread or halt this virus's spread and circumvent this pandemic condition threatening millions of human lives. The absence of definitive treatment is possible to explore to reduce virus infection and enhance patient recovery. Along with off-label medicines, plasma therapy, vaccines, the researchers exploit the various plants/herbs and their constituents to effectively treat nCoV infection. The present study aimed to present brief and most informative salient features of the numerous facts regarding the SARS-CoV-2, including the structure, genomic sequence, recent mutation, targeting possibility, and various hurdles in research progress, and off-labeled drugs, convalescent plasma therapy, vaccine and plants/herbs for the treatment of coronavirus disease-2019 (COVID-19). Results showed that off-labeled drugs such as hydroxychloroquine, dexamethasone, tocilizumab, antiviral drug (remdesivir, favipiravir), etc., give positive results and approved for use or approved for restricted use in some countries like India. Future research should focus on these possibilities that may allow the development of an effective treatment for COVID-19.

Ключевые слова: COVID-19, genomic sequence, spike protein, SARS-CoV-2, ACE2
ЛИТЕРАТУРА
  1. Liu Y, Gayle AA, Wilder-Smith A, Rocklov J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med. 2020;27(2):taaa021.

  2. Vogt TM, Guerra MA, Flagg EW, Ksiazek TG, Lowther SA, Arguin PM. Risk of severe acute respiratory syndrome-associated coronavirus transmission aboard commercial aircraft. J Travel Med. 2006;13(5):268-72.

  3. Shi Y, Wang Y, Shao C, Huang J, Gan J, Huang X, Bucci E, Piacentini M, Ippolito G, Melino G. COVID-19 infection: The perspectives on immune responses. Cell Death Differ. 2020;27(5):1451-4.

  4. Wilder-Smith A, Freedman DO. Isolation, quarantine, social distancing and community containment: Pivotal role for old-style public health measures in the novel coronavirus (2019-nCoV) outbreak. J Travel Med. 2020;27(2):taaa020.

  5. Patel DJ, Patel V. A review of the current state of management and post-recovery rehabilitation of COVID-19. Crit Rev Phys Rehabil Med. 2020;32(2):97-109.

  6. World Health Organization. Coronavirus disease (COVID-19) situation report 152 [cited 2020 Jun 20]. Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200620-covid-19-sitrep-152.pdf?sfvrsn=83aff8ee_2.

  7. Woo PC, Huang Y, Lau SK, Yuen KY. Coronavirus genomics and bioinformatics analysis. Viruses. 2010;2(8):1804-20.

  8. Mousavizadeh L, Ghasemi S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. J Microbiol Immunol Infect. In press 2020.

  9. Schoeman D, Fielding BC. Coronavirus envelope protein: Current knowledge. Virol J. 2019; 16(1):69.

  10. de Haan CA, Te Lintelo E, Li Z, Raaben M, Wurdinger T, Bosch BJ, Rottier PJ. Cooperative involvement of the S1 and S2 subunits of the murine coronavirus spike protein in receptor binding and extended host range. J Virol. 2006;80(22):10909-18.

  11. Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF, Connelly S, Droese B, Klaus JP, Makino S, Sawicki SG, Siddell SG, Stamou DG, Wilson IA, Kuhn P, Buchmeier MJ. A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol. 2011;174(1):11-22.

  12. Sturman LS, Holmes KV, Behnke J. Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid. J Virol. 1980;33(1):449-62.

  13. Mortola E, Roy P. Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS Lett. 2004;576(1-2):174-8.

  14. Zumla A, Chan JF, Azhar EI, Hui DS, Yuen KY. Coronaviruses: Drug discovery and therapeutic options. Nat Rev Drug Discov. 2016;15(5):327-47.

  15. Kaul D. An overview of coronaviruses including the SARS-2 coronavirus: Molecular biology, epidemiology and clinical implications. Curr Med Res Pract. 2020;10(2):54-64.

  16. Cheng VC, Lau SK, Woo PC, Yuen KY. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev. 2007;20(4):660-94.

  17. Kuo L, Hurst KR, Masters PS. Exceptional flexibility in the sequence requirements for coronavirus small envelope protein function. J Virol. 2007;81(5):2249-62.

  18. Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev. 2005;69(4):635-64.

  19. Wang L, Wang Y, Ye D, Liu Q. Review of the 2019 novel coronavirus (SARS-CoV-2) based on current evidence. Int J Antimicrob Agents. 2020;55(6):105948.

  20. Abduljalil JM, Abduljalil BM. Epidemiology, genome, and clinical features of the pandemic SARS-CoV-2: A recent view. New Microbes New Infect. 2020;35:100672.

  21. Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 2020;92(4):418-23.

  22. Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020;24:91-8.

  23. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet. 2020;395(10224):565-74.

  24. Decaro N, Lorusso A. Novel human coronavirus (SARS-CoV-2): A lesson from animal coronaviruses. Vet Microbiol. 2020;244:108693.

  25. Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020;10(2),102-8.

  26. Ma J. Coronavirus (COVID-19): History, current knowledge and pipeline medications. Int J Pharm Pharmacol. 2020;4(1):1-9.

  27. Fehr AR, Perlman S. Coronaviruses: An overview of their replication and pathogenesis. Methods Mol Biol. 2015;1282:1-23.

  28. Jendrach M, Thiel V, Siddell S. Characterization of an internal ribosome entry site within mRNA 5 of murine hepatitis virus. Arch Virol. 1999;144(5):921-33.

  29. de Haan CA, Smeets M, Vernooij F, Vennema H, Rottier PJ. Mapping of the coronavirus membrane protein domains involved in interaction with the spike protein. J Virol. 1999;73(9):7441-52.

  30. Krijnse-Locker J, Ericsson M, Rottier PJ, Griffiths G. Characterization of the budding compartment of mouse hepatitis virus: Evidence that transport from the RER to the Golgi complex requires only one vesicular transport step. J Cell Biol. 1994;124(1-2):55-70.

  31. Petrov D. Photopolarimetrical properties of coronavirus model particles: Spike proteins number influence. J Quant Spectrosc Radiat Transf. 2020;248:107005.

  32. Robson B. COVID-19 coronavirus spike protein analysis for synthetic vaccines, a peptidomimetic antagonist, and therapeutic drugs, and analysis of a proposed achilles' heel conserved region to minimize probability of escape mutations and drug resistance. Comput Biol Med. 2020;121:103749.

  33. Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J, Xiang Z, Mu Z, Chen X, Chen J, Hu K, Jin Q, Wang J, Qian Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV Nat Commun. 2020;11(1):1620.

  34. Sun J, He W-T, Wang L, Lai A, Ji X, Zhai X, Li G, Suchard MA, Tian J, Zhou J, Veit M, Su S. COVID-19: Epidemiology, evolution, and cross-disciplinary perspectives. Trends Mol Med. 2020;26(5):483-95.

  35. Vellingiri B, Jayaramayya K, Iyer M, Narayanasamy A, Govindasamy V, Giridharan B, Ganesan S, Venugopal A, Venkatesan D, Ganesan H, Rajagopalan K, Rahman P, Cho SG, Kumar NS, Subramaniam MD. COVID-19: A promising cure for the global panic. Sci Total Environ. 2020;725:138277.

  36. Wang X, Xu W, Hu G, Xia S, Sun Z, Liu Z, Xie Y, Zhang R, Jiang S, Lu L. SARS-CoV-2 infects T lymphocytes through its spike protein-mediated membrane fusion. Cell Mol Immunol. 2020:17(8):894.

  37. Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S, Qi F, Bao L, Du L, Liu S, Qin C, Sun F, Shi Z, Zhu Y, Jiang S, Lu L. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 2020;30(4):343-55.

  38. Kumar GV, Jeyanthi V, Ramakrishnan S. A short review on antibody therapy for COVID-19. New Microbes New Infect. 2020;35:100682.

  39. Ahmed SF, Quadeer AA, McKay MR. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses. 2020;12(3):254.

  40. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450-2.

  41. Pachetti M, Marini B, Benedetti F, Giudici F, Mauro E, Storici P, Masciovecchio C, Angeletti S, Ciccozzi M, Gallo RC, Zella D, Ippodrino R. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J Transl Med. 2020;18(1):179.

  42. Tian S, Hu W, Niu L, Liu H, Xu H, Xiao SY. Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J Thorac Oncol. 2020;15(5):700-4.

  43. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, Tai Y, Bai C, Gao T, Song J, Xia P, Dong J, Zhao J, Wang FS. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-2.

  44. Nicholls JM, Poon LL, Lee KC, Ng WF, Lai ST, Leung CY, Chu CM, Hui PK, Mak KL, Lim W, Yan KW, Chan KH, Tsang NC, Guan Y, Yuen KY, Peiris JS. Lung pathology of fatal severe acute respiratory syndrome. Lancet. 2003;361(9371):1773-8.

  45. Franks TJ, Chong PY, Chui P, Galvin JR, Lourens RM, Reid AH, Selbs E, McEvoy CP, Hayden CD, Fukuoka J, Taubenberger JK, Travis WD. Lung pathology of severe acute respiratory syndrome (SARS): A study of 8 autopsy cases from Singapore. Hum Pathol. 2003;34(8):743-8.

  46. Chu H, Chan JF, Wang Y, Yuen TT, Chai Y, Hou Y, Shuai H, Yang D, Hu B, Huang X, Zhang X, Cai JP, Zhou J, Yuan S, Kok KH, To KK, Chan IH, Zhang AJ, Sit KY, Au WK, Yuen KY. Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: An ex vivo study with implications for the pathogenesis of COVID-19. Clin Infect Dis. 2020;71(6):1400-9.

  47. Jewett A. Novel coronavirus SARS-CoV-2 target and disable natural killer cells: Core immune effectors for fighting the disease. Crit Rev Immunol. 2020;40(2):167-71.

  48. Dey S. 69% of cases found positive were asymptomatic: ICMR [updated 2020 Apr 22; cited on 2020 Apr 23]. Available from: https://timesofindia.indiatimes.com/india/69-of-cases-found-positive-were-asymptomatic-icmr/articleshow/75282825.cms.

  49. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Hang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506.

  50. Nikolich-Zugich J, Knox KS, Rios CT, Natt B, Bhattacharya D, Fain MJ. SARS-CoV-2 and COVID-19 in older adults: What we may expect regarding pathogenesis, immune responses, and outcomes. Geroscience. 2020;42(2):505-14.

  51. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-33.

  52. Chan JF, Yuan S, Kok KH, To KK, Chu H, Yang J, Xing F, Liu J, Yip CC, Poon RW, Tsoi HW, Lo SK, Chan KH, Poon VK, Chan WM, Ip JD, Cai JP, Cheng VC, Chen H, Hui CK, Yuen KY. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet. 2020;395(10223):514-23.

  53. Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38(1):1-9.

  54. Lee HC, Chathuranga K, Lee JS. Intracellular sensing of viral genomes and viral evasion. Exp Mol Med. 2019;51(12):1-13.

  55. Wilkins C, Gale M Jr. Recognition of viruses by cytoplasmic sensors. Curr Opin Immunol. 2010;22(1):41-7.

  56. World Health Organization. Coronavirus disease 2019 (COVID-19): Situation report 72 [cited 2020 Apr 23]. Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200401-sitrep-72-COVID-19.pdf?sfvrsn=3dd8971b_2.

  57. Colson P, Rolain JM, Lagier JC, Brouqui P, Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents. 2020;55(4):105932.

  58. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269-71.

  59. Kupferschmidt K, Cohen J. Race to find COVID-19 treatments accelerates. Science. 2020;367(6485):1412-3.

  60. Singh B, Ryan H, Kredo T, Chaplin M, Fletcher T. Chloroquine or hydroxychloroquine for prevention and treatment of COVID-19. Cochrane Database Syst Rev. In press 2020.

  61. Tripathy S, Dassarma B, Roy S, Chabalala H, Matsabisa MG. A review on possible modes of actions of chloroquine/hydroxychloroquine: Repurposing against SARS-COV-2 (COVID 19) pandemic. Int J Antimicrob Agents. 2020;56(2):106028.

  62. Roldan EQ, Biasiotto G, Magro P, Zanella I. The possible mechanisms of action of 4-aminoquinolines (chloroquine/hydroxychloroquine) against SARS-CoV-2 infection (COVID-19): A role for iron homeostasis? J Pharm Res. 2020;158:104904.

  63. Singh AK, Singh A, Shaikh A, Singh R, Misra A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes Metab Syndr. 2020;14(3):241-6.

  64. Tan D. COVID-19 ring-based prevention trial with lopinavir/ritonavir (CORIPREV-LR) [cited 2020 Apr 23]. Available from: https://clinicaltrials.gov/ct2/show/NCT04321174.

  65. Kim SH. Comparison of lopinavir/ritonavir or hydroxychloroquine in patients with mild coronavirus disease (COVID-19) [cited 2020 Apr 23]. Available from: https://clinicaltrials.gov/ct2/show/ NCT04307693.

  66. Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: A complex web of host defenses. Annu Rev Immunol. 2014;32:513-45.

  67. Sheahan TP, Sims AC, Leist SR, Schafer A, Won J, Brown AJ, Montgomery SA, Hogg A, Babusis D, Clarke MO, Spahn JE, Bauer L, Sellers S, Porter D, Feng JY, Cihlar T, Jordan R, Denison MR, Baric RS. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun. 2020;11(1):222.

  68. Sallard E, Lescure FX, Yazdanpanah Y, Mentre F, Peiffer-Smadja N. Type 1 interferons as a potential treatment against COVID-19. Antiviral Res. 2020;178:104791.

  69. Khalili JS, Zhu H, Mak NSA, Yan Y, Zhu Y. Novel coronavirus treatment with ribavirin: Groundwork for an evaluation concerning COVID-19. J Med Virol. 2020; 92:740-46.

  70. Hung IF. Lopinavir/ritonavir, ribavirin and IFN-beta combination for nCoV treatment [cited 2020 Apr 23]. Available from: https://clinicaltrials.gov/ct2/show/NCT04276688.

  71. Mok CC. Rheumatology drugs and COVID-19. J Clin Rheumatol Immunol. 2020;20(1):1-3.

  72. Saha A, Sharma AR, Bhattacharya M, Sharma G, Lee SS, Chakraborty C. Probable molecular mechanism of remdesivir for the treatment of COVID-19: Need to know more. Arch Med Res. 2020;51(6):585-6.

  73. Eastman RT, Roth JS, Brimacombe KR, Simeonov A, Shen M, Patnaik S, Hall MD. Remdesivir: A review of its discovery and development leading to emergency use authorization for treatment of COVID-19. ACS Cent Sci. 2020; 6:672-83.

  74. Tchesnokov EP, Feng JY, Porter DP, Gotte M. Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir. Viruses. 2019;11(4):326.

  75. Han JA, Kim JI, Ongusaha PP, Hwang DH, Ballou LR, Mahale A, Aaronson SA, Lee SW. P53-mediated induction of Cox-2 counteracts p53-or genotoxic stress-induced apoptosis. EMBO J. 2002;21(21):5635-44.

  76. Castaneda R. Gilead's remdesivir better suited to mild-to-moderate COVID-19 patients [cited 2020 Apr 24]. Available from: https://www.pharmaceutical-technology.com/comment/gilead-remdesivir-COVID-19/.

  77. Duddu P. Coronavirus treatment: Vaccines/drugs in the pipeline for COVID-19 [cited 2020 Apr 25]. Available from: https://www.clinicaltrialsarena.com/analysis/coronavirus-mers-cov-drugs/.

  78. Rizzardini G. Clinical study to evaluate the performance and safety of favipiravir in COVID-19 [cited 2020 Apr 26]. Available from: https://clinicaltrials.gov/ct2/show/NCT04336904.

  79. Dabbous H. Efficacy and safety of favipiravir in management of COVID-19 (FAV-001) [cited 2020 Apr 25]. Available from: https://clinicaltrials.gov/ct2/show/NCT04349241.

  80. Glenmark Pharmaceuticals. Glenmark becomes the first pharmaceutical company in India to receive regulatory approval for oral antiviral Favipiravir, for the treatment of mild to moderate COVID-19 [updated 2020 Jun 20; cited 2020 Jun 20]. Available from: https://www.glenmarkpharma.com/sites/ default/files/Glenmark-becomes-the-first-pharmaceut-cal-company-in-India-to-receive.pdf.

  81. Zhang C, Zhang Y, Qin Y, Zhang Q, Liu Q, Shang D, Lu H, Li X, Zhou C, Huang F, Jin N, Jiang C. Ifenprodil and flavopiridol identified by genomewide RNA interference screening as effective drugs to ameliorate murine acute lung injury after influenza A H5N1 virus infection. mSystems. 2019;4(6):e00431-19.

  82. Algernon Pharmaceuticals. Algernon submits application to Health Canada for ifenprodil COVID-19 phase 2b/3 multinational clinical trial [updated 2020 Apr 22; cited 2020 Apr 25]. Available from: https://www.globenewswire.com/news-release/2020/04/22/2019882/0/en/Algernon-Submits-Application-to-Health-Canada-for-Ifenprodil-COVID-19-Phase-2b-3-Multinational-Clinical-Trial.html.

  83. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Muller MA, Drosten C, Pohlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-80.e8.

  84. Drug Target Review. Nafamostat inhibits SARS-CoV-2 infection, preventing COVID-19 transmission [updated 2020 Mar 31; cited 2020 Apr 25]. Available from: https://www.drugtargetreview.com/ news/58915/nafamostat-inhibits-SARS-CoV-2-infection-preventing-COVID-19-transmission/.

  85. 0stergaard L. The impact of camostat mesilate on COVID-19 infection (CamoCO-19) [cited 2020 Apr 25]. Available from: https://clinicaltrials.gov/ct2/show/NCT04321096.

  86. Rossi GP. Efficacy of nafamostat in COVID-19 patients (RACONA Study) (RACONA) [cited 2020 Apr 25]. Available from: https://clinicaltrials.gov/ct2/show/NCT04352400.

  87. Lu H. Efficacy and safety of darunavir and cobicistat for treatment of COVID-19 (DC-COVID-19) [cited 2020 Apr 25]. Available from: https://clinicaltrials.gov/ct2/show/NCT04252274.

  88. Zhang XW, Yap YL. The 3D structure analysis of SARS-CoV S1 protein reveals a link to influenza virus neuraminidase and implications for drug and antibody discovery. Theochem. 2004;681(1):137-41.

  89. Azhar S. Hydroxychloroquine, oseltamivir and azithromycin for the treatment of COVID-19 Infection: An RCT (PROTECT) [cited 2020 Apr 25]. Available from: https://clinicaltrials.gov/ct2/ show/NCT04338698.

  90. Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, Doudier B, Courjon J, Giordanengo V, Vieira VE, Dupont HT, Honore S, Colson P, Chabriere E, La Scola B, Rolain JM, Brouqui P, Raoult D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;56(1):105949.

  91. Chorin E, Dai M, Shulman E, Wadhwani L, Bar-Cohen R, Barbhaiya C, Aizer A, Holmes D, Bernstein S, Spinelli M, Park DS, Chintz LA, Jankelson L. The QT interval in patients with COVID-19 treated with hydroxychloroquine and azithromycin. Nat Med. 2020: 26:808-9.

  92. Henriksen M. Anti-IL6 treatment of serious COVID-19 disease with threatening respiratory failure (TOCIVID) [cited 2020 Apr 25]. Available from: https://clinicaltrials.gov/ct2/show/NCT04322773.

  93. Farzam K, Abdullah M. Acetazolamide. Treasure Island, FL: StatPearls Publishing; 2020.

  94. Solaimanzadeh I. Acetazolamide, nifedipine and phosphodiesterase inhibitors: Rationale for their uti-lization as adjunctive countermeasures in the treatment of coronavirus disease 2019 (COVID-19). Cureus. 2020;12(3):e7343.

  95. Geier MR, Geier DA. Respiratory conditions in coronavirus disease 2019 (COVID-19): Important considerations regarding novel treatment strategies to reduce mortality. Med Hypotheses. 2020;140:109760.

  96. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Zhong NS. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708-20.

  97. Singh AK, Majumdar S, Singh R, Misra A. Role of corticosteroid in the management of COVID-19: A systemic review and a Clinician's perspective. Diabetes Metab Syndr. 2020;14(5):971-8.

  98. Remmelts HH, Meijvis SC, Biesma DH, van Velzen-Blad H, Voorn GP, Grutters JC, Bos WJ, Rijkers GT. Dexamethasone downregulates the systemic cytokine response in patients with community-acquired pneumonia. Clin Vaccine Immunol. 2012;19(9):1532-8.

  99. University of Oxford. Dexamethasone reduces death in hospitalised patients with severe respiratory complications of COVID-19 [updated 2020 Jun 16; cited 2020 Jun 17]. Available from: http://www. ox.ac.uk/news/2020-06-16-dexamethasone-reduces-death-hospitalised-patients-severe-respiratory-complications.

  100. Cohen I, Efroni S, Atlan H. Immune computation and COVID-19 mortality: A rationale for IVIg. Crit Rev Immunol. 2020;40(3):195-203.

  101. Cheng Y, Wong R, Soo YO, Wong WS, Lee CK, Ng MH, Chan P, Wong KC, Leung CB, Cheng G. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis. 2005;24(1):44-6.

  102. Johns Hopkins Bloomberg School of Public Health. Johns Hopkins Gets FDA OK to Test Blood Therapies for COVID-19 Patients [updated 2020 Apr 03; cited 2020 Apr 26]. Available from: https:// www.jhsph.edu/news/news-releases/2020/hopkins-gets-FDA-ok-to-test-blood-plasma-therapies-for-COVID-19-patients.html.

  103. Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S, Belij-Rammerstorfer S, Bellamy D, Bibi S, Bittaye M, Clutterbuck EA, Dold C, Faust SN, Finn A, Flaxman AL, Hallis B, Heath P, Jenkin D, Lazarus R, Makinson R, Minassian AM, Pollock KM, Ramasamy M, Robinson H, Snape M, Tarrant R, Voysey M, Green C, Douglas AD, Hill AVS, Lambe T, Gilbert SC, Pollard AJ. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: A preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet. 2020;396(10249):467-78.

  104. Gamaleya Research Institute of Epidemiology and Microbiology, Health Ministry of the Russian Federation. An open study of the safety, tolerability and immunogenicity of the drug "Gam-COVID-Vac" vaccine against COVID-19 [cited 2020 Oct 18]. Available from: https://clinicaltrials.gov/ct2/ show/NCT04436471.

  105. Federal Budgetary Research Institution State Research Center of Virology and Biotechnology "Vector." Study of the safety, reactogenicity and immunogenicity of "EpiVacCorona" vaccine for the prevention of COVID-19 (EpiVacCorona) [cited 2020 Oct 18]. Available from: https://clinicaltrials. gov/ct2/show/NCT04527575.

  106. Craven J. COVID-19 vaccine tracker [updated 2020 Oct 18; cited 2020 Oct 18]. Available from: https://www.raps.org/news-and-articles/news-articles/2020/3/COVID-19-vaccine-tracker.

  107. Xia S, Zhang Y, Wang Y, Wang H, Yang Y, Gao GF, Tan W, Wu G, Xu M, Lou Z, Huang W, Xu W, Huang B, Wang H, Wang W, Zhang W, Li N, Xie Z, Ding L, You W, Zhao Y, Yang X, Liu Y, Wang Q, Huang L, Yang Y, Xu G, Luo B, Wang W, Liu P, Guo W, Yang X. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: A randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis. 2020;21(1):39-51.

  108. Loh T. Sanofi plans human trial for experimental Covid vaccine after positive animal test results India [updated 2020 Oct 15; cited 2020 Oct 18]. Available from: https://theprint.in/health/sanofi-plans-human-trial-for-experimental-covid-vaccine-after-positive-animal-test-results/524452/.

  109. Walsh F. Coronavirus: First patients injected in UK vaccine trial [updated 2020 Apr 23; cited 2020 Apr 25]. Available from: https://www.bbc.com/news/health-52394485.

  110. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-9.

  111. Ziegler CG, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, Cao Y, Yousif AS, Bals J, Hauser BM. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020;181(5):1016-35.e19.

  112. Song JC, Wang G, Zhang W, Zhang Y, Li WQ, Zhou Z, People's Liberation Army Professional Committee of Critical Care Medicine, Chinese Society on Thrombosis and Haemostasis. Chinese expert consensus on diagnosis and treatment of coagulation dysfunction in COVID-19. Military Med Res. 2020;7:1-10.

  113. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, Xie C, Ma K, Shang K, Wang W. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020; 71(15):762-68.

  114. Cattaneo M, Bertinato EM, Birocchi S, Brizio C, Malavolta D, Manzoni M, Muscarella G, Orlandi M. Pulmonary embolism or pulmonary thrombosis in COVID-19? Is the recommendation to use high-dose heparin for thromboprophylaxis justified? Thromb Haemost. 2020;120(8):1230-32.

  115. McGovern R, Conway P, Pekrul I, Tujjar O. The role of therapeutic anticoagulation in COVID-19. Case Rep Crit Care. 2020;2020:8835627.

  116. Ganjhu RK, Mudgal PP, Maity H, Dowarha D, Devadiga S, Nag S, Arunkumar G. Herbal plants and plant preparations as remedial approach for viral diseases. Virusdisease. 2015;26(4):225-36.

  117. Upadhyay AK, Kumar K, Kumar A, Mishra HS. Tinospora cordifolia (Willd.) Hook. f. and Thoms. (Guduchi) - validation of the Ayurvedic pharmacology through experimental and clinical studies. Int J Ayurveda Res. 2010;1(2):112-21.

  118. Sharma U, Bala M, Kumar N, Singh B, Munshi RK, Bhalerao S. Immunomodulatory active compounds from Tinospora cordifolia. J Ethnopharmacol. 2012;141(3):918-26.

  119. Subramanian M, Chintalwar GJ, Chattopadhyay S. Antioxidant properties of a Tinospora cordifolia polysaccharide against iron-mediated lipid damage and gamma-ray induced protein damage. Redox Rep. 2002;7(3):137-43.

  120. Kapil A, Sharma S. Immunopotentiating compounds from Tinospora cordifolia. J Ethnopharmacol. 1997;58(2):89-95.

  121. More P, Pai K. In vitro NADH-oxidase, NADPH-oxidase and myeloperoxidase activity of macrophages after Tinospora cordifolia (guduchi) treatment. Immunopharmacol Immunotoxicol. 2012;34(3):368-72.

  122. Kumar RA, Sridevi K, Kumar NV, Nanduri S, Rajagopal S. Anticancer and immunostimulatory compounds from Andrographis paniculata. J Ethnopharmacol. 2004;92(2-3):291-5.

  123. Handa SS, Sharma A. Hepatoprotective activity of andrographolide from Andrographis paniculata against carbontetrachloride. Indian J Med Res. 1990;92:276-83.

  124. Huang F, Li Y, Leung EL, Liu X, Liu K, Wang Q, Lan Y, Li X, Yu H, Cui L, Luo H, Luo L. A review of therapeutic agents and Chinese herbal medicines against SARS-COV-2 (COVID-19). Pharmacol Res. 2020;158:104929.

  125. Mir S, Masoodi F, Gani A, Ganaie S, Reyaz U, Wani S. Evaluation of anti-oxidant properties of methanolic extracts from different fractions of quince (Cydonia oblonga Miller). Adv Biomed Pharma. 2015;2(1):1-6.

  126. Grundemann C, Papagiannopoulos M, Lamy E, Mersch-Sundermann V, Huber R. Immunomodulatory properties of a lemon-quince preparation (Gencydo(R)) as an indicator of anti-allergic potency. Phytomedicine. 2011;18(8-9):760-8.

  127. Kawahara T, Iizuka T. Inhibitory effect of hot-water extract of quince (Cydonia oblonga) on immuno-globulin E-dependent late-phase immune reactions of mast cells. Cytotechnology. 2011;63(2):143-52.

  128. Pacifico S, Gallicchio M, Fiorentino A, Fischer A, Meyer U, Stintzing FC. Antioxidant properties and cytotoxic effects on human cancer cell lines of aqueous fermented and lipophilic quince (Cydonia oblonga Mill.) preparations. Food Chem Toxicol. 2012;50(11):4130-5.

  129. Fattouch S, Caboni P, Coroneo V, Tuberoso CI, Angioni A, Dessi S, Marzouki N, Cabras P. Antimicrobial activity of Tunisian quince (Cydonia oblonga Miller) pulp and peel polyphenolic extracts. J Agric Food Chem. 2007;55(3):963-9.

  130. Gangal N, Nagle V, Pawar Y, Dasgupta S. Reconsidering traditional medicinal plants to combat COVID-19. Res Rev J Herb Sci. 2020;9(2):29-43.

  131. Gyawali R, Paudel PN, Basyal D, Setzer WN, Lamichhane S, Paudel MK, Gyawali S, Khanal P. A review on ayurvedic medicinal herbs as remedial perspective for COVID-19. J Karnali Academy Health Sci. 2020;26(3)1-21.

  132. Ahui ML, Champy P, Ramadan A, Pham Van L, Araujo L, Brou Andre K, Diem S, Damotte D, KatiCoulibaly S, Offoumou MA, Dy M, Thieblemont N, Herbelin A. Ginger prevents Th2-mediated immune responses in a mouse model of airway inflammation. Int Immunopharmacol. 2008;8(12):1626-32.

  133. Tripathi S, Maier KG, Bruch D, Kittur DS. Effect of 6-gingerol on pro-inflammatory cytokine production and costimulatory molecule expression in murine peritoneal macrophages. J Surg Res. 2007;138(2):209-13.

  134. Chopra RN, Nayar SL, Chopra IC. Glossary of Indian medicinal plants. New Delhi: Council of Scientific & Industrial Research; 1956.

  135. San Chang J, Wang KC, Yeh CF, Shieh DE, Chiang LC. Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J Ethnopharmacol. 2013;145(1):146-51.

  136. Rajagopal K, Byran G, Jupudi S, Vadivelan R. Activity of phytochemical constituents of black pepper, ginger, and garlic against coronavirus (COVID-19): An in silico approach. Int J Health Allied Sci. 2020;9(5):43.

  137. Yagi A, Byung PY. Immune modulation of Aloe vera: Acemannan and gut microbiota modulator. J Gastroenterol Hepatol. 2015;4(8):1707-21.

  138. Langmead L, Makins RJ, Rampton DS. Anti-inflammatory effects of aloe vera gel in human colorectal mucosa in vitro. Aliment Pharmacol Ther. 2004;19(5):521-7.

  139. Radha MH, Laxmipriya NP. Evaluation of biological properties and clinical effectiveness of Aloe vera: A systematic review. J Tradit Complement Med. 2015;5(1):21-6.

  140. Sydiskis RJ, Owen DG, Lohr JL, Rosler KH, Blomster RN. Inactivation of enveloped viruses by anthraquinones extracted from plants. Antimicrob Agents Chemother. 1991;35(12):2463-6.

  141. Syed TA, Cheema KM, Ahmad SA, Unit AH. Aloe vera extract 0.5% in hydrophilic cream versus aloe vera gel for the management of genital herpes in males. A placebo-controlled, doubleblind, comparative study. J Eur Acad Dermatol Venereol. 1996;7(3):294-5.

  142. Kahlon JB, Kemp MC, Carpenter RH, McAnalley BH, McDaniel HR, Shannon WM. Inhibition of AIDS virus replication by acemannan in vitro. Mol Biother. 1991;3(3):127-35.

  143. Gauntt CJ, Wood HJ, McDaniel HR, McAnalley BH. Aloe polymannose enhances anti-coxsackievirus antibody titres in mice. Phytother Res. 2000;14(4):261-6.

  144. Gupta SC, Prasad S, Tyagi AK, Kunnumakkara AB, Aggarwal BB. Neem (Azadirachta indica): An indian traditional panacea with modern molecular basis. Phytomedicine. 2017;34:14-20.

  145. Kumar VS, Navaratnam V. Neem (Azadirachta indica): Prehistory to contemporary medicinal uses to humankind. Asian Pac J Trop Biomed. 2013;3(7):505-14.

  146. Faccin-Galhardi LC, Yamamoto KA, Ray S, Ray B, Carvalho Linhares RE, Nozawa C. The in vitro antiviral property of Azadirachta indica polysaccharides for poliovirus. J Ethnopharmacol. 2012;142(1):86-90.

  147. Xu J, Song X, Yin ZQ, Cheng AC, Jia RY, Deng YX, Ye KC, Shi CF, Lv C, Zhang W. Antiviral activity and mode of action of extracts from neem seed kernel against duck plague virus in vitro1. Poult Sci. 2012;91(11):2802-7.

  148. Tiwari V, Darmani NA, Yue BY, Shukla D. In vitro antiviral activity of neem (Azardirachta indica L.) bark extract against herpes simplex virus type-1 infection. Phytother Res. 2010;24(8): 1132-40.

  149. SaiRam M, Ilavazhagan G, Sharma SK, Dhanraj SA, Suresh B, Parida MM, Jana AM, Devendra K, Selvamurthy W. Anti-microbial activity of a new vaginal contraceptive NIM-76 from neem oil (Azadirachta indica). J Ethnopharmacol. 2000;71(3):3H-82.

  150. Parida MM, Upadhyay C, Pandya G, Jana AM. Inhibitory potential of neem (Azadirachta indica Juss) leaves on dengue virus type-2 replication. J Ethnopharmacol. 2002;79(2):273-8.

  151. Al-Hashemi ZSS, Hossain MA. Biological activities of different neem leaf crude extracts used locally in Ayurvedic medicine. Pac Sci Rev A: Nat Sci Eng. 2016;18(2):128-31.

  152. Biswas K, Chattopadhyay I, Banerjee RK, Bandyopadhyay U. Biological activities and medicinal properties of neem (Azadirachta indica). Curr Sci. 2002;82(11):1336-45.

  153. Thakurta P, Bhowmik P, Mukherjee S, Hajra TK, Patra A, Bag PK. Antibacterial, antisecretory and antihemorrhagic activity of Azadirachta indica used to treat cholera and diarrhea in India. J Ethnopharmacol. 2001;111(3):601-12.

  154. Ray A, Banerjee BD, Sen P. Modulation of humoral and cell-mediated immune responses by Azadirachta indica (Neem) in mice. Indian J Exp Biol. 1996;34(7):698-701.

  155. Mandal-Ghosh I, Chattopadhyay U, Baral R. Neem leaf preparation enhances Th1 type immune response and anti-tumor immunity against breast tumor associated antigen. Cancer Immun. 2007;7(1):8.

  156. Mbah AU, Udeinya I J, Shu EN, Chijioke CP, Nubila T, Udeinya F, Muobuike A, Mmuobieri A, Obioma MS. Fractionated neem leaf extract is safe and increases CD4+ cell levels in HIV/AIDS patients. Am J Ther. 2007;14(4):369-74.

  157. Sangwan R, Chaurasiya N, Misra L, Lal P, Uniyal G, Sharma R, Sangwan N, Suri K, Qazi G, Tuli R. Phytochemical variability in commercial herbal products and preparations of Withania somnifera (Ashwagandha). Curr Sci. 2004;86(3):461-5.

  158. Kambizi L, Goosen B, Taylor M, Afolayan A. Anti-viral effects of aqueous extracts of Aloe ferox and Withania somnifera on herpes simplex virus type 1 in cell culture. S Afr J Sci. 2007;103(9-10):359-60.

  159. Cai Z, Zhang G, Tang B, Liu Y, Fu X, Zhang X. Promising anti-influenza properties of active constituent of Withania somnifera ayurvedic herb in targeting neuraminidase of H1N1 influenza: Computational study. Cell Biochem Biophys. 2015;72(3):727-39.

  160. Straughn, AR, Kakar, SS. Withaferin A: A potential therapeutic agent against COVID-19 infection. J Ovarian Res. 2020;13(1):1-5.

  161. Chopra RN, Nayar SL, Chopra IC, Asolkar LV, Kakkar KK. Glossary of Indian medicinal plants. New Delhi: Council of Scientific & Industrial Research; 1956.

  162. Zhang YJ, Tanaka T, Yang CR, Kouno I. New phenolic constituents from the fruit juice of Phyllanthus emblica. Chem Pharm Bull. 2001;49(5):537-40.

  163. Zhang YJ, Nagao T, Tanaka T, Yang CR, Okabe H, Kouno I. Antiproliferative activity of the main constituents from Phyllanthus emblica. Biol Pharm Bull. 2004;27(2):251-5.

  164. Ghosal S. Active constituents of Emblica officinalis: Part I. The chemistry and antioxidative effects of two new hydrolysable tannins, emblicanin A and B. Indian J Chem. 1996;35:941-8.

  165. Anila L, Vijayalakshmi NR. Flavonoids from Emblica officinalis and Mangifera indica: Effectiveness for dyslipidemia. J Ethnopharmacol. 2002;79(1):81-7.

  166. Khanna P, Bansal R. Phyllantidine & phyllantine from Emblica officinalis Gaertn leaves, fruits & in vitro tissue cultures. Indian J Exp Biol. 1975;13:82-3.

  167. Asolkar LV, Chopra RN. Glossary of Indian medicinal plants with active principles, Part 2. New Delhi: Publications & Information Directorate, CSIR; 1992.

  168. Ganju L, Karan D, Chanda S, Srivastava KK, Sawhney RC, Selvamurthy W. Immunomodulatory effects of agents of plant origin. Biomed Pharmacother. 2003;57(7):296-300.

  169. Suja R, Nair A, Sujith S, Preethy J, Deepa A. Evaluation of immunomodulatory potential of Emblica officinalis fruit pulp extract in mice. Indian J Anim Res. 2009;43(2):103-6.

  170. Godhwani S, Godhwani JL, Vyas DS. Ocimum sanctum: A preliminary study evaluating its immuno-regulatory profile in albino rats. J Ethnopharmacol. 1988;24(2-3):193-8.

  171. Mediratta PK, Dewan V, Bhattacharya SK, Gupta VS, Maiti PC, Sen P. Effect of Ocimum sanctum Linn. on humoral immune responses. Indian J Med Res. 1988;87:384-6.

  172. Mediratta PK, Sharma KK, Singh S. Evaluation of immunomodulatory potential of Ocimum sanctum seed oil and its possible mechanism of action. J Ethnopharmacol. 2002;80(1):15-20.

  173. Jurenka JS. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: A review of preclinical and clinical research. Altern Med Rev. 2009;14(2):141-53.

  174. Roy A, Sarkar B, Celik C, Ghosh A, Basu U, Jana M, Jana A, Gencay A, Can Sezgin G, Ildiz N, Dam P, Mandal AK, Ocsoy I. Can concomitant use of zinc and curcumin with other immunity-boosting nutraceuticals be the arsenal against COVID-19? Phytother Res. 2020;34:2445-8.

  175. Ali I, Alharbi OML. COVID-19: Disease, management, treatment, and social impact. Sci Total Environ. 2020;728:138861.

  176. Chen CH, Chou TW, Cheng LH, Ho CW. In vitro anti-adenoviral activity of five Allium plants. J Taiwan Inst Chem Eng. 2011;42(2):228-32.

  177. Castrillo JL, Carrasco L. Action of 3-methylquercetin on poliovirus RNA replication. J Virol. 1987;61(10):3319-21.

  178. Vrijsen R, Everaert L, Van Hoof LM, Vlietinck AJ, Vanden Berghe DA, Boeye A. The poliovirus-induced shut-off of cellular protein synthesis persists in the presence of 3-methylquercetin, a flavonoid which blocks viral protein and RNA synthesis. Antiviral Res. 1987;7(1):35-42.

  179. Harazem R, Rahman S, Kenawy A. Evaluation of antiviral activity ofAllium cepa and Allium sativum extracts against Newcastle disease virus. Alex J Vet Sci. 2019;61(1):108-18.

  180. Mohamed E. Antiviral properties of garlic cloves juice compared with onion bulbs juice against potato virus Y (PVY). J Am Sci. 2010;6(8):302-10.

  181. Takimoto T, Taylor GL, Connaris HC, Crennell SJ, PortnerA. Role ofthe hemagglutinin-neuraminidase protein in the mechanism of paramyxovirus-cell membrane fusion. J Virol. 2002;76(24):13028-33.

  182. Wu W, Li R, Li X, He J, Jiang S, Liu S, Yang J. Quercetin as an antiviral agent inhibits influenza A virus (IAV) entry. Viruses. 2015;8(1):6.

  183. Gonzalez O, Fontanes V, Raychaudhuri S, Loo R, Loo J, Arumugaswami V, Sun R, Dasgupta A, French SW. The heat shock protein inhibitor quercetin attenuates hepatitis C virus production. Hepatology. 2009;50(6):1756-64.

  184. Hellen CU, Kraeusslich HG, Wimmer E. Proteolytic processing of polyproteins in the replication of RNA viruses. Biochemistry. 1989;28(26):9881-90.

  185. Sinha M, Bandyopadhyay S, Banerjee S, Chakraborty U, Bhattacharjee A, Nayak D, Khurana A, Manchanda RK, Sarkar D, Ray R. Quercetin alters pro-inflammatory cytokine changes in wild dengue virus challenged HepG2 cell line. 2018;7(15):1137-49.

  186. Glaser W, Skern T. Extremely efficient cleavage of eIF4G by picornaviral proteinases L and 2A in vitro. FEBS Lett. 2000;480(2-3):151-5.

  187. Qiu X, Kroeker A, He S, Kozak R, Audet J, Mbikay M, Chretien M. Prophylactic efficacy of quercetin 3-beta-O-d-glucoside against Ebola virus infection. Antimicrob Agents Chemother. 2016;60(9):5182-8.

  188. Shin JH, Ryu JH, Kang MJ, Hwang CR, Han J, Kang D. Short-term heating reduces the anti-inflammatory effects of fresh raw garlic extracts on the LPS-induced production of NO and pro-inflammatory cytokines by downregulating allicin activity in RAW 264.7 macrophages. Food Chem Toxicol. 2013;58:545-51.

  189. Pandurangan AK, Ismail S, Saadatdoust Z, Esa NM. Allicin alleviates dextran sodium sulfate-(DSS-) induced ulcerative colitis in BALB/c mice. Oxid Med Cell Longev. 2015;2015:605208.

  190. Guo NL, Lu DP, Woods GL, Reed E, Zhou GZ, Zhang LB, Waldman RH. Demonstration of the antiviral activity of garlic extract against human cytomegalovirus in vitro. Chin Med J. 1993;106(2): 93-6.

  191. Tsai Y, Cole LL, Davis LE, Lockwood SJ, Simmons V, Wild GC. Antiviral properties of garlic: In vitro effects on influenza B, herpes simplex and coxsackie viruses. Planta Med. 1985;51(5):460-1.

  192. Weber ND, Andersen DO, North JA, Murray BK, Lawson LD, Hughes BG. In vitro virucidal effects of Allium sativum (garlic) extract and compounds. Planta Med. 1992;58(5):417-23.

  193. Josling P. Preventing the common cold with a garlic supplement: A double-blind, placebo-controlled survey. Adv Ther. 2001;18(4):189-93.

  194. Shojai TM, Langeroudi AG, Karimi V, Barm A, Sadri N. The effect of Allium sativum (garlic) extract on infectious bronchitis virus in specific pathogen free embryonic egg. Avicenna J Phytomed. 2016;6(4):458-67.

  195. Fenwick GR, Hanley AB. The genus Allium: Part 1. Crit Rev Food Sci Nutr. 1985;22(3):199-271.

  196. Hall A, Troupin A, Londono-Renteria B, Colpitts TM. Garlic organosulfur compounds reduce inflammation and oxidative stress during dengue virus infection. Viruses. 2017;9(7):159.

  197. Gulati K, Rai N, Chaudhary S, Ray A. Nutraceuticals in respiratory disorders. In: Gupta RC, editor. Nutraceuticals. Cambridge: Academic Press; 2016. p. 75-86.

  198. Ji Y, Wei C, Xin G, editors. The study of chemical composition and pharmacological action of the alkaloid from plants of Lycoris herb. IOP Conf Ser Earth Environ Sci. 2017;100(1):012045.

  199. Islam MT, Sarkar C, El-Kersh DM, Jamaddar S, Uddin SJ, Shilpi JA, Mubarak MS. Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data. Phytother Res. 2020;34(10):2471-92.

  200. Lau KM, Lee KM, Koon CM, Cheung CS, Lau CP, Ho HM, Lee MY, Au SW, Cheng CH, Lau CB, Tsui SK, Wan DC, Waye MM, Wong KB, Wong CK, Lam CW, Leung PC, Fung KP. Immunomodulatory and anti-SARS activities of Houttuynia cordata. J Ethnopharmacol. 2008;118(1):79-85.

  201. Chiow KH, Phoon MC, Putti T, Tan BK, Chow VT. Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection. Asian Pac J Trop Med. 2016;9(1):1-7.

  202. Miraj S. Therapeutic effects of Rheum palmatum L.(Dahuang): A systematic review. Der Pharma Chemica. 2016;8(13):50-4.

  203. Gong S, Su X, Yu H, Li J, Qin Y, Xu Q, Luo WS. A study on anti-SARS-CoV 3CL protein of flavonoids from litchi chinensis sonn core. Chinese Pharmacol Bull. 2008;24:699-700.

  204. Lin CW, Tsai FJ, Tsai CH, Lai CC, Wan L, Ho TY, Hsieh CC, Chao PDL. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res. 2005;68(1):36-42.

  205. Nguyen TTH, Woo HJ, Kang HK, Kim YM, Kim DW, Ahn SA, Xia Y, Kim D. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol Lett. 2012;34(5):831-8.

  206. Smirnova IE, Kazakova OB. Structure - Anti-influenza type a activity relationship among a series of nitrogen lupane triterpenoids. Nat Prod Commun. 2018;13(10):1267-70.

  207. Hong EH, Song JH, Kang KB, Sung SH, Ko HJ, Yang H. Anti-influenza activity of betulinic acid from Zizyphus jujuba on influenza A/PR/8 virus. Biomol Ther. 2015;23(4):345-9.

  208. Kumar S, Madaan R, Gahlot K, Sharma A. The genus Bryonia: A review. Pharmacogn Rev. 2008;2(4):392-401.

  209. Nair K, Gopinadhan S, Kurup T, Aggarwal A, Varanasi R, Nayak D, Padmanabhan M, Oberai P, Singh H. Homoeopathic genus epidemicus 'Bryonia alba' as a prophylactic during an outbreak of Chikungunya in India: A cluster-randomised, double-blind, placebo-controlled trial. Ind J Res Homoeopathy. 2014;8(3):160-65.

  210. Al-Awadi FM, Srikumar T, Anim J, Khan I. Antiinflammatory effects of Cordia myxa fruit on experimentally induced colitis in rats. Nutrition. 2001;17(5):391-6.

  211. Castro M. The complete homeopathy handbook: Safe and effective ways to treat fevers, coughs, colds and sore throats, childhood ailments, food poisoning, flu, and a wide range of everyday complaints. New York: Macmillan; 1991.

  212. Moerman DE. Native american ethnobotany: In: Selin H, editor. Encyclopaedia of the history of science, technology, and medicine in non-western cultures. Dordrecht: Springer; 2017.

  213. Maas M, Petereit F, Hensel A. Caffeic acid derivatives from Eupatorium perfoliatum L. Molecules. 2008;14(1):36-45.

  214. Tallei TE, Tumilaar SG, Niode NJ, Fatimawali F, Kepel BJ, Idroes R, Effendi Y. Potential of plant bioactive compounds as SARS-CoV-2 main protease (Mpro) and spike (S) glycoprotein inhibitors: A molecular docking study. Scientifica. 2020;2020;6307457.

  215. Duraipandiyan V, Al-Dhabi NA, Balachandran C, Ignacimuthu S, Sankar C, Balakrishna K. Antimicrobial, antioxidant, and cytotoxic properties of vasicine acetate synthesized from vasicine isolated from Adhatoda vasica L. Biomed Res Int. 2015;2015:727304.

  216. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-3.

  217. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444-8.

  218. Chen X, Li R, Pan Z, Qian C, Yang Y, You R, Zhao J, Liu P, Gao L, Li Z, Huang Q, Xu L, Tang J, Tian Q, Yao W, Hu L, Yan X, Zhou X, Wu Y, Deng K, Zhang Z, Qian Z, Chen Y, Ye L. Human monoclonal antibodies block the binding of SARS-CoV-2 spike protein to angiotensin converting enzyme 2 receptor. Cell Mol Immunol. 2020; 17(6):647-9.

  219. Choudhary S, Malik YS, Tomar S. Identification of SARS-CoV-2 cell entry inhibitors by drug repurposing using in silico structure-based virtual screening approach. Front Immunol. 2020;11:1664.

  220. Cavasotto CN, Di Filippo JD. In silico drug repurposing for COVID-19: Targeting SARS-CoV-2 pro-teins through docking and consensus ranking. Mol Inform. 2020;40(1):2000115.

  221. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281-92.e6.

  222. Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J Virol. 2011;85(2):873-82.

  223. Bestle D, Heindl MR, Limburg H, Pilgram O, Moulton H, Stein DA, Hardes K, Eickmann M, Dolnik O, Rohde C, Klenk HD. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance. 2020;3(9):e202000786.

  224. Pandey P, Rane JS, Chatterjee A, Kumar A, Khan R, Prakash A, Ray S. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: An in silico study for drug development. J Biomol Struct Dyn. In press 2020.

  225. Wang C, Li W, Drabek D, Okba NM, van Haperen R, Osterhaus AD, van Kuppeveld FJ, Haagmans BL, Grosveld F, Bosch BJ. A human monoclonal 1 antibody blocking SARS-CoV-2 infection. Nat Commun. 2020;11:2251.

  226. Talukdar A. Compilation of potential protein targets for SARS-CoV-2: Preparation of homology model and active site determination for future rational antiviral design. ChemRxiv [cited 2020 Apr 23]. Available from: https://doi.org/10.26434/chemrxiv.12084468.v1.

  227. Navratil V, Lionnard L, Longhi S, Hardwick M, Combet C, Aouacheria A. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) envelope (E) protein harbors a conserved BH3-like sequence. bioRxiv [cited 2020 Jun 17]. Available from: https://doi.org/10.1101/2020.04.09.033522.

ЦИТИРОВАНО В
  1. Нloba Oleksandr P., Rybalko Svitlana L., Garnyk Tetyana P., Medkov Igor V., Zalevsky Olexandr V., Humankova Olga S., Mykhailova Oksana S., Influence of small Doses of Electromagnetic Oscillations on the features of Coronavirus Reproduction, Acta Balneologica, 63, 3, 2021. Crossref

  2. McCarthy Matthew W., Current and emerging immunomodulators for treatment of SARS-CoV2 infection (COVID-19), Expert Opinion on Pharmacotherapy, 23, 5, 2022. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain