Доступ предоставлен для: Guest
Composites: Mechanics, Computations, Applications: An International Journal
Главный редактор: Alexander N. Vlasov (open in a new tab)

Выходит 4 номеров в год

ISSN Печать: 2152-2057

ISSN Онлайн: 2152-2073

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00004 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.08 SJR: 0.153 SNIP: 0.178 CiteScore™:: 1 H-Index: 12

Indexed in

DYNAMIC ANALYSIS AND ACTIVE CONTROL OF DISTRIBUTED PIEZOTHERMOELASTIC FGM COMPOSITE BEAM WITH POROSITIES MODELED BY THE FINITE ELEMENT METHOD

Том 12, Выпуск 1, 2021, pp. 57-74
DOI: 10.1615/CompMechComputApplIntJ.2021036981
Get accessGet access

Краткое описание

An analytical method on active vibration control of smart functionally graded laminated beam containing layers of piezoelectric materials, used as sensors and actuators, under a thermal load, is investigated. The properties of FGM layer are functionally graded in the z-axis direction according to the volume fraction power law distribution. During the manufacture of FGMs, porosities may occur in the material, so it is necessary to take into account the effect of these imperfections. The effect of thermoelastic coupling on the structure dynamics and control are studied and discussed. Linear quadratic Gaussian (LQG) control accompanied by Kalman's filter is used for active vibration control of the FG beam with porosity. The motion equations are derived based on the Timoshenko's beam theory and the finite element method through Hamilton's principle. The simulation's results are presented to visualize the states of their dynamics.

ЛИТЕРАТУРА
  1. Abramovich, H. and Livshits, A., Free Vibrations of Non-Symmetric Cross-Ply Laminated Composite Beams, J. Sound Vib., vol. 176, no. 5, pp. 597-612, 1994.

  2. Abramovich, H., Deflection Control of Laminated Composite Beams with Piezoceramic Layers-Closed Form Solutions, Compos. Struct., vol. 43, no. 3, pp. 217-231, 1998.

  3. Azadi, M., Free and Forced Vibration Analysis of FG Beam Considering Temperature Dependency of Material Properties, J. Mech. Sci. Technol., vol. 25, no. 1, pp. 69-80, 2011.

  4. Azadi, M., Vibration Suppression of a Thermoelastic FGM Beam Subjected to Follower Force, Aircraft Eng. Aerospace Technol., vol. 90, no. 9, pp. 1317-1325, 2018.

  5. Azadi, V., Azadi, M., Fazelzadeh, S.A., and Azadi, E., Active Control of an FGM Beam under Follower Force with Piezoelectric Sensors/Actuators, Int. J. Structural Stability Dynamics, vol. 14, no. 2, 2014. DOI: 10.1142/S0219455413500636.

  6. Banerjee, J.R., Free Vibration of Sandwich Beams Using the Dynamic Stiffness Method, Computers Struct., vol. 81, nos. 18-19, pp. 1915-1922, 2003.

  7. Bendine, K., Boukhoulda, F.B., Nouari, M., and Satla, Z., Active Vibration Control of Functionally Graded Beams with Piezoelectric Layers Based on Higher Order Shear Deformation Theory, Earthquake Eng. Eng. Vib., vol. 15, no. 4, pp. 611-620, 2016.

  8. Bodaghi, M., Damanpack, A.R., Aghdam, M.M., and Shakeri, M., Non-Linear Active Control of FG Beams in Thermal Environments Subjected to Blast Loads with Integrated FGP Sensor/Actuator Layers, Compos. Struct., vol. 94, no. 12, 2012. DOI: 10.1016/j.compstruct.2012.06.001.

  9. Boyere, E., Modelisation de L'Amortissement en Dynamique Lineaire, Manuel de Reference, Code Aster, vol. 40, no. 89, p. 130, 2011.

  10. Bruant, I. and Proslier, L., Improved Active Control of a Functionally Graded Material Beam with Piezo-electric Patches, J. Vib. Control, vol. 21, no. 10, pp. 2059-2080, 2015.

  11. Chen, D., Kitipornchai, S., and Yang, J., Dynamic Response and Energy Absorption of Functionally Graded Porous Structures, Mater. Design, vol. 140, pp. 473-487, 2018.

  12. Chopra, I., Review of State of Art of Smart Structures and Integrated Systems, AIAA J., vol. 40, no. 11, pp. 2145-2187, 2002.

  13. Culshaw, B., Smart Structures-A Concept or a Reality, Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng., vol. 206, no. 1, pp. 1-8, 1992.

  14. Dogan, V., Active Vibration Control of Functionally Graded Plates under Random Excitation, J. Intell. Mater. Syst. Struct., vol. 26, no. 11, pp. 1370-1384, 2015.

  15. Ebrahimi, F. and Hashemi, M., Vibration Analysis of Non-Uniform Imperfect Functionally Graded Beams with Porosities in Thermal Environment, J. Mech., vol. 81, pp. 739-757, 2017.

  16. Edery-Azulay, L. and Abramovich, H., Piezoelectric Actuation and Sensing Mechanisms-Closed Form Solutions, Compos. Struct., vol. 64, nos. 3-4, pp. 443-453, 2004.

  17. El Harti, K., Rahmoune, M., Sanbi, M., Saadani, R., Bentaleb, M., and Rahmoune, M., Finite Element Model of Vibration Control for an Exponential Functionally Graded Timoshenko Beam with Distributed Piezoelectric Sensor/Actuator, Actuators, vol. 8, no. 1, p. 19, 2019. DOI: 10.3390/act8010019.

  18. El Harti, K., Rahmoune, M., Sanbi, M., Saadani, R., Bentaleb, M., and Rahmoune, M., Dynamic Control of Euler Bernoulli FG Porous Beam under Thermal Loading with Bonded Piezoelectric Materials, Ferroelectrics, vol. 558, no. 1, pp. 104-116, 2020.

  19. El Harti, K., Sanbi, M., Rahmoune, M., Saadani, R., Agounoun, R., and Bentaleb, M., Active Vibration Control of Sandwich FGM Beam with Piezoelectric Sensor/Actuator, Int. J. Appl. Eng. Res., vol. 12, no. 20, pp. 9338-9345, 2017.

  20. Elshafei, M.A. and Alraiess, F., Modeling and Analysis of Smart Piezoelectric Beams Using Simple Higher Order Shear Deformation Theory, Smart Mater. Struct., vol. 22, no. 3, p. 035006, 2013.

  21. Ganesan, N. and Pradeep, V., Buckling and Vibration of Sandwich Beams with Viscoelastic Core under Thermal Environments, J. Sound Vib., vol. 286, nos. 4-5, pp. 1067-1074, 2005.

  22. Gharib, A., Salehi, M., and Fazeli, S., Deflection Control of Functionally Graded Material Beams with Bonded Piezoelectric Sensors and Actuators, Mater. Sci. Eng.: A, vol. 498, nos. 1-2, pp. 110-114, 2008.

  23. Heidary, F. and Eslami, R.M., Dynamic Analysis of Distributed Piezothermoelastic Composite Plate Using First-Order Shear Deformation Theory, J. Therm. Stresses, vol. 27, no. 7, pp. 587-605, 2004.

  24. Koizumi, M., FGM Activities in Japan, Composites Part B: Eng., vol. 28, nos. 1-2, pp. 1-4, 1997.

  25. Kumar, N. and Singh, S.P., Vibration and Damping Characteristics of Beams with Active Constrained Layer Treatments under Parametric Variations, Mater. Design, vol. 30, no. 10, pp. 4162-4174, 2009.

  26. Li, L., Lao, W.-H., Zhang, D., and Zhang, Y., Vibration Control and Analysis of a Rotating Flexible FGM Beam with a Lumped Mass in Temperature Field, Compos. Struct., vol. 208, pp. 244-260, 2019.

  27. Maruani, J., Bruant, I., Pablo, F., and Gallimard, L., A Numerical Efficiency Study on the Active Vibration Control for a FGPM Beam, Compos. Struct., vol. 182, pp. 478-486, 2017.

  28. Naganarayana, B.P., Prathap, G., Dattaguru, B., and Ramamurty, T.S., A Field-Consistent and Variationally Correct Representation of Transverse Shear Strains in the Nine-Noded Plate Element, Computer Meth. Appl. Mech. Eng., vol. 97, no. 3, pp. 355-374, 1992.

  29. Nguyen, N.V., Nguen, L.B., Nguen-Xuan, H., and Lee, J., Analysis and Active Control of Geometrically Nonlinear Responses of Smart FG Porous Plates with Graphene Nanoplatelets Reinforcement Based on Bezier Extraction of NURBS, Int. J. Mech. Sci., vol. 180, 2020. DOI: 10.1016/j.ijmechsci.2020.105692.

  30. Nguyen, T.K., Vo, T.P., and Thai, H.T., Static and Free Vibration of Axially Loaded Functionally Graded Beams Based on the First-Order Shear Deformation Theory, Composites Part B: Eng., vol. 55, pp. 147-157, 2013.

  31. Niino, M., The Functionally Gradient Materials, J. Jpn. Soc. Compos. Mater., vol. 13, pp. 257-264, 1987.

  32. Niknam, H. and Akbarzadeh, A.H., Thermo-Mechanical Bending of Architected Functionally Graded Cellular Beams, Composites Part B: Eng., vol. 174, p. 107060, 2019.

  33. Panda, R.K., Nayak, B., and Sarangi, S.K., Active Vibration Control of Smart Functionally Graded Beams, Procedia Engineering, vol. 144, pp. 551-559, 2016.

  34. Panda, S. and Ray, M.C., Active Control of Geometrically Nonlinear Vibrations of Functionally Graded Laminated Composite Plates Using Piezoelectric Fiber Reinforced Composites, J. Sound Vib., vol. 325, nos. 1-2, pp. 186-205, 2009.

  35. Rao, S.S. and Sunar, M., Piezoelectricity and Its Use in Disturbance Sensing and Control of Flexible Structures: A Survey, Appl. Mech. Rev, vol. 47, no. 4, pp. 113-123, 1994.

  36. Rashidifar, M.A. and Rashidifar, A.A., Investigation of the Dynamic Behavior of Functionally Graded Material under Different Boundary Conditions Using the Euler-Bernoulli Theory, Compos.: Mech., Comput., Appl.: An Int. J., vol. 5, no. 1, pp. 21-33, 2014.

  37. Reddy, J.N., Energy Principles and Variational Methods in Applied Mechanics, New York: John Wiley & Sons, 2017.

  38. Sanbi, M., Contribution a L'etude de quelques Structures Mecatroniques: Dynamique, Controle actif et Propagation d'ondes, Thesis, University of Moulay Ismail Meknes, Morocco, 2010.

  39. Selim, B.A., Zhang, L.W., and Liew, K.M., Active Vibration Control of FGM Plates with Piezoelectric Layers Based on Reddy's Higher-Order Shear Deformation Theory, Compos. Struct., vol. 155, pp. 118-134, 2016.

  40. Shi, G. and Lam, K.Y., Finite Element Vibration Analysis of Composite Beams Based on Higher-Order Beam Theory, J. Sound Vib., vol. 219, no. 4, pp. 707-721, 1999.

  41. Thai, H.T. and Vo, T.P., Bending and Free Vibration of Functionally Graded Beams Using Various Higher-Order Shear Deformation Beam Theories, Int. J. Mech. Sci., vol. 62, no. 1, pp. 57-66, 2012.

  42. Vinson, J.R. and Sierakowski, R.L., The Behavior of Structures Composed of Composite Materials, New York: Springer, vol. 105, 2006.

  43. Wattanasakulpong, N. and Ungbhakorn, V., Linear and Nonlinear Vibration Analysis of Elastically Restrained Ends FGM Beams with Porosities, Aerospace Sci. Technol., vol. 32, no. 1, pp. 111-120, 2014.

ЦИТИРОВАНО В
  1. El Harti Khalid, Saadani Rachid, Rahmoune Miloud, Active Vibration Control of Timoshenko Sigmoid Functionally Graded Porous Composite Beam with Distributed Piezoelectric Sensor/Actuator in a Thermal Environment, Designs, 7, 1, 2022. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain