Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Special Topics & Reviews in Porous Media: An International Journal
ESCI SJR: 0.259 SNIP: 0.466 CiteScore™: 0.83

ISSN Печать: 2151-4798
ISSN Онлайн: 2151-562X

Special Topics & Reviews in Porous Media: An International Journal

DOI: 10.1615/SpecialTopicsRevPorousMedia.2019018980
pages 447-456


Balu Chandavath
Kakatiya University, Warangal, Telangana, India
R. Modem
Osmania University, Hyderabad, Telangana, India
S. R. Bandari
Osmania University, Hyderabad, Telangana, India
M. R. Perati
Kakatiya University, Warangal, Telangana, India

Краткое описание

This paper studies torsional vibrations of a poroelastic dissipative thick-walled hollow cylinder in the presence of an initial stress. Governing equations are derived from Biot's incremental deformation theory. Under stress-free boundary conditions, frequency equations are obtained in the case of dissipation. The limiting cases of a solid cylinder and thin shell are discussed. The complex valued frequency equation gives the frequency and attenuation. A comparative study has been made between elastic and poroelastic cylinders. Numerical results are depicted graphically and then discussed.


  1. Abramowitz, M. and Stegun, I., Handbook of Mathematical Functions, New York: Dover, 1965.

  2. Biot, M.A., Mechanics of Incremental Deformation, Hoboken, NJ: Wiley, 1965.

  3. Blachman, N.M. and Mousavinezhad, S.H., Trigonometric Approximations for Bessel Functions, IEEE Trans. Aerospace Electron. Syst., vol. 22, pp. 2-7, 1986.

  4. Chatterjee, M. and Chattopadhyay, A., Reflection and Refraction in Triclinic Crystalline Media under Initial Stresses, Int. J. Eng. Sci., pp. 143-158,2014.

  5. David, J.H., Laboratory Measurements of Poroelastic Constants and Flow Parameters and Some Associated Phenomena, University of Winconsin, Madison, 2000.

  6. Dey, S. and Dutta, D., Torsional Wave Propagation in an Initially Stressed Cylinder, Proc. Indian. Sci. Acad., vol. 58, no. 5, pp. 425-429, 1992.

  7. Dey, S., Roy, N., and Ghosh, S., Propagation of Rayleigh Waves in an Initial Stressed in Compressible Half Space under a Rigid Layer: A Mathematical Model Showing the Existence of Non-Seismic Zone and Explanation of Two Rayleigh Wave Fronts, Indian J. Pure. Appl. Math., vol. 18, no. 6, pp. 567-576, 1987.

  8. Fatt, I., Biot-Willis Elastic Coefficients for Sandstone, ASMEJ. Appl. Mech., pp. 296-297, 1957.

  9. Malla Reddy, P. and Tajuddin, M., Exact Analysis of the Plane Strain Vibrations of Thick-Walled Hollow Poroelastic Cylinders, Int. J. Solids Struct., vol. 37, pp. 3439-3456,2000.

  10. Nowinski, J.L. and Davis, C.F., Propagation of Longitudinal Waves in Circularly Cylindrical Bone Elements, ASME J. Appl. Mech, pp. 578-584, 1971.

  11. Selim, M.M., Torsional Waves Propagation in an Initially Stressed Dissipative Cylinder, Appl. Math. Sci., vol. 29, pp. 1419-1427, 2007.

  12. Sharma, J.N. and Pal, M., Propagation of Lamb Waves in a Transversely Isotropic Piezothermoelastic Plate, J. Sound Vib., vol. 270, pp. 587-610, 2004a.

  13. Sharma, J.N. and Pal, M., Rayleigh-Lamb Waves in Magneto-Thermoelastic Homogeneous Isotropic Plates, Int. J. Eng. Sci., vol. 42, pp. 137-155,2004b.

  14. Sharma, M.D., Wave Propagation in a Dissipative Poroelastic Medium, IMA J. Appl. Math, vol. 78, no. 1, pp. 59-69,2013.

  15. Solorza, S. and Sahay, P.N., Standing Torsional Waves in a Fully Saturated, Porous, Circular Cylinder, Geophys. J. Int., vol. 157, pp. 455-473,2004.

  16. Yew, C.H. and Jogi, P.N., Study of Wave Motions in Fluid-Saturated Porous Rocks, J. Acoust. Soc. Am., vol. 60, pp. 2-8,1976.