Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Heat Transfer Research
Импакт фактор: 0.404 5-летний Импакт фактор: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Печать: 1064-2285
ISSN Онлайн: 2162-6561

Выпуски:
Том 51, 2020 Том 50, 2019 Том 49, 2018 Том 48, 2017 Том 47, 2016 Том 46, 2015 Том 45, 2014 Том 44, 2013 Том 43, 2012 Том 42, 2011 Том 41, 2010 Том 40, 2009 Том 39, 2008 Том 38, 2007 Том 37, 2006 Том 36, 2005 Том 35, 2004 Том 34, 2003 Том 33, 2002 Том 32, 2001 Том 31, 2000 Том 30, 1999 Том 29, 1998 Том 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018025888
pages 335-348

ENTROPY GENERATION ANALYSIS OF FORCED CONVECTION FLOW IN A SEMICIRCULAR MICROCHANNEL WITH TiO2/WATER NANOFLUID

H. Kaya
Department of Mechanical Engineering, Bartin University, Bartin, Turkey
Recep Ekiciler
Department of Mechanical Engineering, Gazi University, Ankara, Turkey
Kamil Arslan
Department of Mechanical Engineering, Karabük University, Karabük, Turkey

Краткое описание

In this study, entropy generation caused by heat transfer and friction of forced convection flow in a semicircular cross-sectioned microchannel with TiO2/water nanofluid was numerically analyzed. The volume concentrations of the nanofluid were taken 1.0%, 2.0%, 3.0%, and 4.0%. Local and total entropy generation due to the heat transfer and friction were calculated for the microchannel. A three-dimensional analysis was simulated under steady-state laminar flow conditions with Reynolds number varying from 100 to 1000. The results of the simulation were obtained using the CFD code. The flow was considered as hydrodynamically fully developed under thermally developing conditions. A uniform heat flux boundary condition was applied at the bottom surface of the microchannel. According to the results of the numerical study, the effect of the nanofluid volume concentration and fluid velocity on entropy generation was evaluated. The findings show that the total and friction values of entropy generation increase with increasing flow velocity, while heat transfer entropy generation values decrease since nanofluids improve the heat transfer capability. Also, the results indicate that an increase in the volume concentration of the nanofluid causes friction entropy generation enhancement while heat transfer entropy generation decreases in all cases.


Articles with similar content:

NUMERICAL INVESTIGATION ON FORCED CONVECTION IN TRIANGULAR CROSS SECTION MICROCHANNELS WITH NANOFLUIDS
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
Sergio Nardini, Salvatore Tamburrino, Bernardo Buonomo, Oronzio Manca
ANALYSIS OF ENTROPY GENERATION, PUMPING POWER, AND TUBE WALL TEMPERATURE IN AQUEOUS SUSPENSIONS OF ALUMINA PARTICLES
Heat Transfer Research, Vol.43, 2012, issue 4
Abdollah Avara, Ebrahim Shirani, Mohammad Karami
COMPUTATIONAL FLUID DYNAMICS MODELING OF DEVELOPING FORCED LAMINAR CONVECTION FLOW OF AL2O3–WATER NANOFLUID IN A TWO-DIMENSIONAL RECTANGULAR SECTION CHANNEL
Journal of Enhanced Heat Transfer, Vol.25, 2018, issue 4-5
Luca A. Tagliafico, Annalisa Marchitto, Vincenzo Bianco, Federico Scarpa
NUMERICAL INVESTIGATION OF TRIPLE CONCENTRIC−TUBE HEAT EXCHANGER USING Al2O3-WATER NANOFLUIDS
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
Manish Mishra, Tarikayehu Amanuel
HEAT TRANSFER ENHANCEMENT IN A RADIAL FLOW COOLING SYSTEM USING NANOFLUIDS
ICHMT DIGITAL LIBRARY ONLINE, Vol.11, 2004, issue
Cong Tam Nguyen, Gilles C. Roy, Samy Joseph Palm