Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Heat Transfer Research
Импакт фактор: 0.404 5-летний Импакт фактор: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Печать: 1064-2285
ISSN Онлайн: 2162-6561

Выпуски:
Том 51, 2020 Том 50, 2019 Том 49, 2018 Том 48, 2017 Том 47, 2016 Том 46, 2015 Том 45, 2014 Том 44, 2013 Том 43, 2012 Том 42, 2011 Том 41, 2010 Том 40, 2009 Том 39, 2008 Том 38, 2007 Том 37, 2006 Том 36, 2005 Том 35, 2004 Том 34, 2003 Том 33, 2002 Том 32, 2001 Том 31, 2000 Том 30, 1999 Том 29, 1998 Том 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2014006874
pages 91-107

KINETIC CHARACTERIZATION OF EXPANDED GRAPHITE, CALCIUM CHLORIDE, AND MAGNESIUM HYDROXIDE COMPOSITE FOR THE CHEMICAL HEAT PUMP

Seon Tae Kim
Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-22, Ookayama, Meguro-ku, Tokyo 152-8550, JAPAN
Massimiliano Zamengo
Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-22, Ookayama, Meguro-ku, Tokyo 152-8550, JAPAN
Junichi Ryu
Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-22, Ookayama, Meguro-ku, Tokyo 152-8550, JAPAN
Yukitaka Kato
Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1-N1-22, Ookayama, Meguro-ku, Tokyo 152-8550, Japan

Краткое описание

A composite chemical heat storage material, EMC, comprising a mixture of expanded graphite (EG), magnesium hydroxide (Mg(OH)2), and calcium chloride (CaCl2) has been developed as a magnesium oxide/water chemical heat pump reactant. The reaction kinetic characterization of the optimized EMC (which was an optimized mixing weight ratio of the material) was conducted. From BET and thermal conductivity measurements, it was confirmed that an optimized EMC had a higher specific surface area and thermal conductivity values than pure Mg(OH)2 on adding EG. The durability of the optimized EMC was also investigated by thermobalance and XRD experiments. EMC maintained enough reacted conversion and unchanged crystal structure throughout the repetitive experiment. The film diffusion control model was suggested as a dominant reaction process for MgO hydration by kinetic analysis of experimental results. In conclusion, the optimized EMC showed shorter dehydration time corresponding to the heat storage process period and enhanced hydration conversion corresponding to the heat output capacity than pure Mg(OH)2 on adding EG, a moldable and porous carbon material, and a CaCl2 hydrophilic material.


Articles with similar content:

THERMAL CONDUCTIVITY ENHANCEMENT OF MATERIAL FOR CALCIUM CHLORIDE/WATER THERMOCHEMICAL ENERGY STORAGE
International Heat Transfer Conference 16, Vol.20, 2018, issue
Maho Mitsuo, Yukitaka Kato, Takayuki Terauchi, Hiroshi Iguchi, Keiko Fujioka, Takuma Ohtaki
Effect of Thermal Conductivity Enhancement of Thermochemical Energy Storage Material on Unused Heat Utilization System
International Heat Transfer Conference 15, Vol.11, 2014, issue
Yukitaka Kato, Keiko Fujioka, Massimiliano Zamengo
HIGH TEMPERATURE SYNTHESIS OF MODIFIED EXFOLIATED GRAPHITE-BASED MATERIALS AND THEIR MECHANICAL PROPERTIES
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.4, 2000, issue 4
Yu. A. Nikitin, Wasil P. Honcharyk, Ivan G. Chernysh
THE EFFECTS OF CO2 CONCENTRATION ON LIMESTONE DESULFURIZATION DURING O2/CO2 COMBUSTION
Proceedings of Symposium on Energy Engineering in the 21st Century (SEE2000) Volume I-IV, Vol.0, 2000, issue
Bo Feng, Jian Wu , Quanhai Wang, Lizhi Zhang, Jianrong Qiu
THERMOCHEMICAL PROPERTIES AND LASER-IGNITION PERFORMANCE OF Al/CuMoO4, Al/CuO/MoO3, Al/CuO AND Al/MoO3 NANOTHERMITES
International Journal of Energetic Materials and Chemical Propulsion, Vol.17, 2018, issue 4
Daniel Chamberland, David G. Kelly, Tommy Ringuette, Catalin Florin Petre