Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Heat Transfer Research
Импакт фактор: 0.404 5-летний Импакт фактор: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Печать: 1064-2285
ISSN Онлайн: 2162-6561

Выпуски:
Том 51, 2020 Том 50, 2019 Том 49, 2018 Том 48, 2017 Том 47, 2016 Том 46, 2015 Том 45, 2014 Том 44, 2013 Том 43, 2012 Том 42, 2011 Том 41, 2010 Том 40, 2009 Том 39, 2008 Том 38, 2007 Том 37, 2006 Том 36, 2005 Том 35, 2004 Том 34, 2003 Том 33, 2002 Том 32, 2001 Том 31, 2000 Том 30, 1999 Том 29, 1998 Том 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2014007285
pages 749-766

NUMERICAL SIMULATION OF ELECTRICALLY CONDUCTING FLUID FLOW AND FREE CONVECTIVE HEAT TRANSFER IN AN ANNULUS ON APPLYING A MAGNETIC FIELD

Masoud Afrand
Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
Said Farahat
Department of Mechanical Engineering, University of Sistan and Baluchestan, Zahedan, Iran
Alireza Hossein Nezhad
Department of Mechanical Engineering, University of Sistan and Baluchestan, Zahedan, Iran
Ghanbar Ali Sheikhzadeh
Department of Mechanical Engineering, University of Kashan, Kashan, Iran
Faramarz Sarhaddi
Department of Mechanical Engineering, University of Sistan and Baluchestan, Zahedan, Iran

Краткое описание

The presence of free convective heat transfer in an enclosure filled with a congealing melt leads to the output of a product with a nonuniform structure involving large grains. On applying a proper magnetic field to the melt in the enclosure, the convective flows are decreased and uniform and small grain structures are obtained. In this work, using the finite volume method, we investigated the application of a magnetic field to the convective heat transfer and temperature fields in steady and laminar flows of melted gallium in a long annulus between two horizontal cylinders at the Prandtl number 0.02. The inner and outer walls of the annulus are at TC and TH temperatures, respectively, with TH > TC. We also investigated the effect of the magnetic field intensity and the Hartmann number on the flow and temperature fields, the influence of the variation of other parameters, like the Rayleigh number, the angle of magnetic field application, the ratio of the inner to outer radii of the annulus on the flow and temperature field. It has been reveales that on changing the field angle to the horizon, the Nusselt number (Nu) is increased, which is of importance in a specific range of Hartmann numbers. Also with increase in the Rayleigh number, the change in Nu with the magnetic field intensity does not occur. In studying the influence of the outer radius to inner radius ratio on Nu at a fixed Rayleigh number, we have found that with increase in the diameter ratio, the Nu number increases.


Articles with similar content:

CONVECTIVE INSTABILITY PROBLEM OF A HORIZONTAL LAYER OF AN ELECTRICALLY CONDUCTING FLUID UNDER VERTICAL MAGNETIC FIELD
International Heat Transfer Conference 8, Vol.3, 1986, issue
Ichiro Tanasawa, Toru Maekawa
THE CHANGE OF BIFURCATING NATURAL CONVECTION IN A HORIZONTAL ANNULUS BY SELF-INDUCED CIRCULAR MAGNETIC FIELD
International Heat Transfer Conference 16, Vol.9, 2018, issue
Il Seouk Park, Jinho Oh
NATURAL CONVECTION FROM A CYLINDER IN SQUARE POROUS ENCLOSURE FILLED WITH NANOFLUIDS
Journal of Porous Media, Vol.18, 2015, issue 6
Habibis Saleh, Ishak Hashim
UNSTEADY FREE CONVECTION IN A SQUARE POROUS CAVITY SATURATED WITH NANOFLUID: THE CASE OF LOCAL THERMAL NONEQUILIBRIUM AND BUONGIORNO'S MATHEMATICAL MODELS
Journal of Porous Media, Vol.20, 2017, issue 11
Ioan Pop, Mohammad Ghalambaz, Mikhail A. Sheremet, H. Zargartalebi
EFFECT OF THE ASPECT RATIO ON NATURAL CONVECTION IN A POROUS CAVITY WITH A SINUSOIDAL ACTIVE THERMAL WALL
Heat Transfer Research, Vol.47, 2016, issue 3
Gang Wang, Feng Wu, Wenjing Zhou, Xiaoxun Ma