Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Heat Transfer Research
Импакт фактор: 0.404 5-летний Импакт фактор: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Печать: 1064-2285
ISSN Онлайн: 2162-6561

Выпуски:
Том 50, 2019 Том 49, 2018 Том 48, 2017 Том 47, 2016 Том 46, 2015 Том 45, 2014 Том 44, 2013 Том 43, 2012 Том 42, 2011 Том 41, 2010 Том 40, 2009 Том 39, 2008 Том 38, 2007 Том 37, 2006 Том 36, 2005 Том 35, 2004 Том 34, 2003 Том 33, 2002 Том 32, 2001 Том 31, 2000 Том 30, 1999 Том 29, 1998 Том 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.v37.i4.50
pages 349-363

Estimation of the Thermohydraulic Efficiency of Heat Exchanging Apparatuses with Twisted Tubes

Boris V. Dzyubenko
Moscow Aviation Institute (State Technical University), 4 Volokolamskoe Highway, Moscow, 125993, Russia

Краткое описание

The paper presents generalizing relations to calculate heat transfer and hydraulic resistance in longitudinal flow of heat-transfer agents in the cavities of a heat exchanger with twisted tubes and the results of comparison of the thermohydraulic efficiency of the heat-transfer surfaces of the twisted tubes with the surfaces of smooth tubes and tubes having other heat-transfer intensifiers. It has been found that in the flow transition region Reynolds-related regimes with an advanced increase in the heat-transfer coefficient in comparison with the increase in the coefficient of hydraulic resistance is implemented. In a longitudinal flow past twisted tubes, a 1.5−3.5-fold increase in the heat-transfer coefficient is ensured, as compared to flow in smooth straight tubes. The estimation of the thermohydraulic efficiency of heat exchangers made by the method of effective parameters and the analysis of the efficiency of various heat-transfer surfaces made it possible to find the flow regions where the heat-exchange apparatuses with flow swirling by twisted tubes are advantageous over heat exchangers involving other methods of heat-transfer enhancement.


Articles with similar content:

Influence of Flow Twisting on Convective Heat Transfer in Banks of Twisted Tubes
Heat Transfer Research, Vol.36, 2005, issue 6
Boris V. Dzyubenko
INFLUENCE OF TURBULENCE INTENSITY ON HEAT TRANSFER AND PRESSURE DROP IN COMPACT HEAT EXCHANGERS
International Heat Transfer Conference 8, Vol.6, 1986, issue
D. Traub, Karl Stephan
CHOICE AND JUSTIFICATION OF THE HEAT TRANSFER INTENSIFICATION METHODS
Journal of Enhanced Heat Transfer, Vol.25, 2018, issue 6
Yury A. Kuzma-Kichta, Alexander I. Leontiev
HEAT TRANSFER PERFORMANCE OF A PLATE-FINNED TUBE HEAT EXCHANGER A THREE-DIMENSIONAL STEADY NUMERICAL ANALYSIS FOR A SINGLE ROW TUBE
International Heat Transfer Conference 11, Vol.16, 1998, issue
Hajime Onishi, Koji Matsubara, Kyoji Inaoka, Kenjiro Suzuki
THERMAL EFFICIENCY AND THE OPTIMUM SIZES OF FINNED SURFACES WITH COATING
International Heat Transfer Conference 13, Vol.0, 2006, issue
V. G. Gorobets