Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Heat Transfer Research
Импакт фактор: 0.404 5-летний Импакт фактор: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Печать: 1064-2285
ISSN Онлайн: 2162-6561

Выпуски:
Том 50, 2019 Том 49, 2018 Том 48, 2017 Том 47, 2016 Том 46, 2015 Том 45, 2014 Том 44, 2013 Том 43, 2012 Том 42, 2011 Том 41, 2010 Том 40, 2009 Том 39, 2008 Том 38, 2007 Том 37, 2006 Том 36, 2005 Том 35, 2004 Том 34, 2003 Том 33, 2002 Том 32, 2001 Том 31, 2000 Том 30, 1999 Том 29, 1998 Том 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018024647
pages 739-756

ANALYTICAL APPROACH TO STAGNATION-POINT FLOW AND HEAT TRANSFER OF A MICROPOLAR FLUID VIA A PERMEABLE SHRINKING SHEET WITH SLIP AND CONVECTIVE BOUNDARY CONDITIONS

Khilap Singh
Department of Mathematics, Statistics and Computer Science, G.B. Pant University of Agriculture and Technology, Uttarakhand-263145, India
Alok Kumar Pandey
Department of Mathematics, Graphic Era Deemed to be University, Dehradun, 248002, Uttarakhand, India
Manoj Kumar
Department of Mathematics, Statistics and Computer Science, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India 263145

Краткое описание

In the current study, effects of chemical reaction on the MHD micropolar fluid stagnation-point flow through a stretching sheet with slip and convective boundary conditions are considered. The pertinent partial differential equations are transformed into a set of nonlinear coupled ordinary differential equations which are then solved numerically by applying the differential transformation method (DTM). The effects of different physical parameters on velocity, microrotation, temperature, and concentration distributions are illustrated graphically and discussed in detail. Numerical results for the skin friction coefficient, couple stress coefficient, and Nusselt number are tabulated for various physical parameters.

ЛИТЕРАТУРА

  1. Akbar, N.S., Khan, Z.H., and Nadeem, S., The Combined Effects of Slip and Convective Boundary Conditions on Stagnation- Point Flow of CNT Suspended Nanofl uid over a Stretching Sheet, J. Molec. Liq., vol. 196, pp. 21–25, 2014.

  2. Asghar, S., Ahmad, A., and Alsaedi, A., Flow of a Viscous Fluid over an Impermeable Shrinking Sheet, Appl. Math. Lett., vol. 26, pp. 1165–1168, 2013.

  3. Ashraf, M., Kamal, M.A., and Syed, K.S., Numerical Simulation of Flow of a Micropolar Fluid between a Porous Disk and a Nonporous Disk, Appl. Math. Model., vol. 33, pp. 1933–1943, 2009.

  4. Aurangzaib, Uddin, M.S., Bhattacharyya, K., and Shafie, S., Micropolar Fluid Flow and Heat Transfer over an Exponentially Permeable Shrinking Sheet, Propul. Power Res., vol. 5, no. 4, pp. 310–317, 2016.

  5. Crane, L.J., Flow past a Stretching Plate, Z. Angew. Math. Phys., vol. 21, pp. 645–647, 1970.

  6. Das, K., Slip Effects on MHD Mixed Convection Stagnation-Point Flow of a Micropolar Fluid Towards a Shrinking Vertical Sheet, Comput. Math. Appl., vol. 63, pp. 255–267, 2012.

  7. Devakar, M. and Iyengar, T.K.V., Stokes First Problem for a Micropolar Fluid through State-Space Approach, Appl. Math. Model., vol. 33, pp. 924–936, 2009.

  8. Epstein, M. and Cho, D.H., Melting Heat Transfer in Steady Laminar Flow over a Flat Plate, J. Heat Transf., vol. 98, pp. 531–533, 1976.

  9. Eringen, A.C., Theory of Micropolar Fluid, J. Math. Mech., vol. 16, pp. 1–18, 1966.

  10. Eringen, A.C., Theory of Thermomicrofl uids, J. Math. Anal. Appl., vol. 38, pp. 480–496, 1972.

  11. Hiemenz, K., Die Grenzschicht an Einem in den Gleichformigen Flussigkeitsstrom Eingetauchten Geraden Kreiszylinder, Dinglers Polytech. J., vol. 326, pp. 321–324, 1911.

  12. Hassanien, I.A. and Hamad, M.A., Group Theoretic Method for Unsteady Free Convection Flow of a Micropolar Fluid along a Vertical Plate in a Thermally Stratifi ed Medium, Appl. Math. Model., vol. 32, pp. 1099–1114, 2008.

  13. Hsiao, K.L., Heat and Mass Transfer for Micropolar Flow with Radiation Effect past a Nonlinearly Stretching Sheet, Heat Mass Transf., vol. 46, pp. 413–419, 2010.

  14. Hsiao, K.L., Micropolar Nanofl uid Flow with MHD and Viscous Dissipation Effects Towards a Stretching Sheet with Multimedia Feature, Int. J. Heat Mass Transf., vol. 112, pp. 983–990, 2017.

  15. Hayat, T., Iqbal, Z., Qasim, M., and Obaidat, S., Steady Flow of an Eyring Powell Fluid over a Moving Surface with Convective Boundary Conditions, Int. J. Heat Mass Transf., vol. 55, pp. 1817–1822, 2012.

  16. Ishak, A., Nazar, R., and Pop, I., Heat Transfer over a Stretching Surface with Variable Heat Flux in Micropolar Fluids, Phys. Lett. A, vol. 372, pp. 559–561, 2008.

  17. Jang, M.J., Chen, C.L., and Liu, Y.C., Two-Dimensional Differential Transform for Partial Differential Equations, Appl. Math. Comput., vol. 121, pp. 261–270, 2001.

  18. Lin, I.H. and Hsiao, K.L., Thin Nutrition Pie Manufacturing by Using Radiation Effect at Stagnation Point Heat Transfer with Micropolar Flow and Multimedia Feature, in Proc. of 2015 Int. Conf. on Food Hygiene, Agriculture and Animal Science, pp. 53–61, 2016.

  19. Lin, I.H., Lee, B., and Hsiao, K.L., Energy Conversion for Food Manufacturing Extrusion Process of Micropolar Fluid Flow with Physical Multimedia Features, in Proc. 2014 Int. Symp. on Computer, Consumer and Control (IS3C), IEEE, pp. 55–58, 2014.

  20. Łukaszewicz, G., Micropolar Fluids: Theory and Application, Basel: Birkhäuser, 1999.

  21. Makinde, O.D., Chinyoka, T., and Rundora, L., Unsteady Flow of a Reactive Variable Viscosity Non-Newtonian Fluid through a Porous Saturated Medium with Asymmetric Convective Boundary Conditions, Comput. Math. Appl., vol. 62, pp. 3343– 3352, 2011.

  22. Muthu, P., Kumar, B.V.R., and Chandra, P., Peristaltic Motion of Micropolar Fluid in Circular Cylindrical Tubes: Effect of Wall Properties, Appl. Math. Model., vol. 32, pp. 2019–2033, 2008.

  23. Rani, N. and Tomar, S.K., Thermal Convection Problem of Micropolar Fluid Subjected to Hall Current, Appl. Math. Model., vol. 34, pp. 508–519, 2010.

  24. Roşca, N.C. and Pop, I., Boundary Layer Flow Past a Permeable Shrinking Sheet in a Micropolar Fluid with a Second Order Slip Flow Model, Eur. J. Mech. B/Fluids, vol. 48, pp. 115–122, 2014.

  25. Rundora, L. and Makinde, O.D., Effects of Suction/Injection on Unsteady Reactive Variable Viscosity Non-Newtonian Fluid Flow in a Channel Filled with Porous Medium and Convective Boundary Conditions, J. Petrol. Sci. Eng., vol. 108, pp. 328–335, 2013.

  26. Salem, A.M. and El-Aziz, M.A., Effect of Hall Currents and Chemical Reaction on Hydro-Magnetic Flow of a Stretching Vertical Surface with Internal Heat Generation/Absorption, Appl. Math. Model., vol. 32, pp. 1236–1254, 2008.

  27. Saleh, S.H.M., Arifi n, N.M., Nazar, R., Ali, F.M., and Pop, I., Mixed Convection Stagnation Flow Towards a Vertical Shrinking Sheet, Int. J. Heat Mass Transf., vol. 73, pp. 839–848, 2014.

  28. Sankara, K.K. and Watson, L.T., Micropolar Flow Past a Stretching Sheet, J. Appl. Math. Phys., vol. 36, pp. 845–853, 1985.

  29. Srinivasacharya, D. and Bindu, K.H., Entropy Generation in a Micropolar Fluid Flow through an Inclined Channel with Slip and Convective Boundary Conditions, Energy, vol. 91, pp. 72–83, 2015.

  30. Wang, C.Y., Stagnation Flow Towards a Shrinking Sheet, Int. J. Non-Linear Mech., vol. 43, pp. 377–382, 2008.

  31. Yacob, N.A., Ishak, A., and Pop, I., Melting Heat Transfer in Boundary Layer Stagnation-Point Flow Towards a Stretching/ Shrinking Sheet in a Micropolar Fluid, Comput. Fluids, vol. 47, pp. 16–21, 2011.

  32. Zhou, K., Differential Transformation and Its Applications for Electrical Circuits, China: Huazhong University Press, 1986.


Articles with similar content:

Thermophoresis Effects on Heat and Mass Transfer in MHD Flow Over a Vertical Stretching Surface with Radiation
International Journal of Fluid Mechanics Research, Vol.36, 2009, issue 6
Ahmed Y. Bakier
MIXED CONVECTION IN MHD MICROPOLAR FLUID WITH RADIATION AND CHEMICAL REACTION EFFECTS
Heat Transfer Research, Vol.45, 2014, issue 3
D. Srinivasacharya, M. Upendar
MIXED CONVECTION IN VISCOELASTIC FLOW DUE TO A STRETCHING SHEET IN A POROUS MEDIUM
Journal of Porous Media, Vol.16, 2013, issue 6
Ulavathi S. Mahabaleswar, Antonio Mastroberardino
MIXED CONVECTION MHD HEAT AND MASS TRANSFER OVER A NONLINEAR STRETCHING VERTICAL SURFACE IN A NON-DARCIAN POROUS MEDIUM
Journal of Porous Media, Vol.17, 2014, issue 6
Rama Subba Reddy Gorla, Masoud Molaei Najafabadi
NUMERICAL EXAMINATION OF MHD NONLINEAR RADIATIVE SLIP MOTION OF NON-NEWTONIAN FLUID ACROSS A STRETCHING SHEET IN THE PRESENCE OF A POROUS MEDIUM
Heat Transfer Research, Vol.50, 2019, issue 12
J. V. Ramana Reddy, V. Sugunamma, N. Sandeep, Kempannagari Anantha Kumar