Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Heat Transfer Research
Импакт фактор: 1.199 5-летний Импакт фактор: 1.155 SJR: 0.267 SNIP: 0.503 CiteScore™: 1.4

ISSN Печать: 1064-2285
ISSN Онлайн: 2162-6561

Выпуски:
Том 51, 2020 Том 50, 2019 Том 49, 2018 Том 48, 2017 Том 47, 2016 Том 46, 2015 Том 45, 2014 Том 44, 2013 Том 43, 2012 Том 42, 2011 Том 41, 2010 Том 40, 2009 Том 39, 2008 Том 38, 2007 Том 37, 2006 Том 36, 2005 Том 35, 2004 Том 34, 2003 Том 33, 2002 Том 32, 2001 Том 31, 2000 Том 30, 1999 Том 29, 1998 Том 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2016012339
pages 877-891

NUMERICAL SIMULATION OF BOUNDARY LAYER TRANSITION FOR TURBINE BLADE HEAT TRANSFER PREDICTION

Athmane Harizi
Mechanical Engineering Department, Science and Technology Faculty, University of Batna, Algeria
A. Gahmousse
Energetic and Turbomachinery Laboratory LET, University of Tebessa, 12002 Algeria
E.-A. Mahfoudi
Mechanical Engineering Department, Science and Technology Faculty, University of Constantine, Algeria
A. Mameri
Mechanical Engineering Department, Science and Technology Faculty, University of Oum El Bouaghi, 04000 Algeria

Краткое описание

This paper deals with an external heat transfer numerical simulation for a two-dimensional transonic turbine blade cascade. We focused on the prediction of the laminar-turbulent boundary layer transition which can have an important effect on the distribution of the heat transfer around the turbine blade surface. The Reynolds-averaged Navier–Stokes equations (RANS) with the correlation-based transitional model developed by Menter and later modified by Langtry are solved. Comparisons with measurements for a highly loaded transonic turbine blade, experimentally studied on the von Karman Institute (VKI) test facility, show good agreement especially for the prediction of the transition onset for the all test cases considered. One of the major contributions of this paper is the implementation and evaluation of a set of new empirical correlations published recently in the literature. The results show that all correlations tested correctly predict the boundary layer transition onset with a relative difference for the heat flux computed in the fully turbulent region.


Articles with similar content:

PREDICTIONS OF HEAT TRANSFER IN TURBINE BLADES WITH A 2-EQUATION MODEL OF TURBULENCE
International Heat Transfer Conference 7, Vol.6, 1982, issue
T. R. Shembharkar , B. Ramachandra Pai
Large-Eddy Simulations of flow and heat transfer around a low-Mach number turbine blade
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2012, issue
Nicolas Maheu, Pascale Domingo, Vincent Moureau
LARGE-EDDY SIMULATION OF TURBULENT FLOW AND HEAT TRANSFER IN A RIBBED SQUARE CHANNEL FLOW
International Heat Transfer Conference 13, Vol.0, 2006, issue
Odile Labbe
TURBINE VANE CASCADE HEAT TRANSFER PREDICTIONS USING A MODIFIED VERSION OF THE γ − Reοt % LAMINAR-TURBULENT TRANSITION MODEL
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2009, issue
Alexander Smirnovsky, Evgueni M. Smirnov
Experimental and Numerical Investigation on a Fully Developed Turbulent Pipe Flow over a Semicircle Orifice
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2012, issue
S. Okuda, Shinnosuke Obi, Takuya Kawata, C.-H. Lepeut, M. Rasti