Доступ предоставлен для: Guest
Heat Transfer Research

Выходит 18 номеров в год

ISSN Печать: 1064-2285

ISSN Онлайн: 2162-6561

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00072 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.43 SJR: 0.318 SNIP: 0.568 CiteScore™:: 3.5 H-Index: 28

Indexed in

FLOW STRUCTURE AND HEAT TRANSFER IN MULTIPLE IMPINGING JETS

Том 47, Выпуск 4, 2016, pp. 359-382
DOI: 10.1615/HeatTransRes.2016006660
Get accessGet access

Краткое описание

Large eddy simulation of flow and heat transfer of multiple turbulent round jets in an in-line array impinging on a flat plate is conducted. To capture the interactions between the jets, the full geometry is meshed and used in the simulation of nine jets. The single jet Reynolds number based on the nozzle diameter of 13 mm, jet initial average velocity of 23.88 m/s, and the properties of air at room temperature is equal to 20,000. The computations of the mean vertical and horizontal components of the velocity vector, in selected planes, show very good agreement with experiments. The flow behavior of the jets agrees with experimental findings in terms of vortices surrounding the jets and the appearance of the asymmetry on, and close to, the flat impingement plane. The predicted mean surface Nusselt number on the flat heated plate shows also excellent agreement with experiments and a relative maximum between the jets in the region of the upwash fountain flow where the wall jets collide, not seen in the experiments, but captured by the numerics. It is believed that the present contribution provides an additional insight into the physics of important flow characteristics such as the individual paths of the central, side, and the corner jet streams. In particular, their effect on the nonhomogeneous cooling of the target wall, efficient in the corner regions and degraded in the central region, is also addressed.

ЦИТИРОВАНО В
  1. Ljung Anna-Lena, Andersson L. Robin, Andersson Anders G., Lundström T. Staffan, Eriksson Mats, Modelling the Evaporation Rate in an Impingement Jet Dryer with Multiple Nozzles, International Journal of Chemical Engineering, 2017, 2017. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain