Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Heat Transfer Research
Импакт фактор: 1.199 5-летний Импакт фактор: 1.155 SJR: 0.267 SNIP: 0.503 CiteScore™: 1.4

ISSN Печать: 1064-2285
ISSN Онлайн: 2162-6561

Выпуски:
Том 51, 2020 Том 50, 2019 Том 49, 2018 Том 48, 2017 Том 47, 2016 Том 46, 2015 Том 45, 2014 Том 44, 2013 Том 43, 2012 Том 42, 2011 Том 41, 2010 Том 40, 2009 Том 39, 2008 Том 38, 2007 Том 37, 2006 Том 36, 2005 Том 35, 2004 Том 34, 2003 Том 33, 2002 Том 32, 2001 Том 31, 2000 Том 30, 1999 Том 29, 1998 Том 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2016007840
pages 797-816

RADIATION EFFECT ON MHD STAGNATION-POINT FLOW OF A NANOFLUID OVER A NONLINEAR STRETCHING SHEET WITH CONVECTIVE BOUNDARY CONDITION

Muhammad Imran Anwar
Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia; Department of Mathematics, Faculty of Science, University of Sargodha UOS, Sargodha, Punjab, Pakistan
Sharidan Shafie
Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia 81310 UTM Johor Bahru, Johor, Malaysia
Abdul Rahman M. Kasim
Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia JB, 81310 Skudai, Johor, Malaysia
Mohd Zuki Salleh
Applied and Industrial Mathematics Research Group, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300 UMP Kuantan, Pahang, Malaysia

Краткое описание

The effect of radiation on the MHD stagnation-point flow of a nanofluid over a nonlinear stretching sheet with convective boundary condition is investigated numerically. A small magnetic Reynolds number and Rosseland approximation are also assumed in this study where the sheet is stretched with a power law velocity in the presence of a nonuniform magnetic field applied in the y direction normal to the flow on the sheet. A highly nonlinear problem is modeled using the modified Bernoulli equation for an electrically conducting nanofluid. The momentum, thermal, and concentration boundary-layer thicknesses are intensified with increasing values of the velocity ratio parameter. By using appropriate similarity transformation, the system of nonlinear partial differential equations is reduced to ordinary differential equations. These equations subjected to the boundary conditions are solved numerically using the Keller-box method. Numerical results are plotted and discussed for pertinent flow parameters. A comparison with previous results given in the literature is also made.


Articles with similar content:

MHD MIXED CONVECTION FLOW OF NANOFLUID OVER A NONLINEAR STRETCHING SHEET WITH SUCTION OR INJECTION IN THE PRESENCE OF NON-UNIFORM HEAT SOURCE
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
Ponnaiah Saikrishnan, N. Samyuktha
MAGNETO-NANOFLUID FLOW DUE TO BIDIRECTIONAL STRETCHING SURFACE IN A POROUS MEDIUM
Special Topics & Reviews in Porous Media: An International Journal, Vol.10, 2019, issue 5
Muhammad Faisal, Tariq Javed, Iftikhar Ahmad
COMBINED INFLUENCE OF BROWNIAN MOTION AND THERMOPHORESIS ON MAXWELL THREE-DIMENSIONAL NANOFLUID FLOW OVER STRETCHING SHEET WITH CHEMICAL REACTION AND THERMAL RADIATION
Journal of Porous Media, Vol.23, 2020, issue 4
P. Sreedevi, Patakota Sudarsana Reddy
VISCOUS DISSIPATION AND JOULE HEATING INFLUENCES PAST A STRETCHING SHEET IN A POROUS MEDIUM WITH THERMAL RADIATION SATURATED BY SILVER–WATER AND COPPER–WATER NANOFLUIDS
Special Topics & Reviews in Porous Media: An International Journal, Vol.10, 2019, issue 2
Manoj Kumar, Ashish Mishra
ENTROPY ANALYSIS OF UNSTEADY MAGNETOHYDRODYNAMIC NANOFLUID OVER STRETCHING SHEET WITH ELECTRIC FIELD
International Journal for Multiscale Computational Engineering, Vol.15, 2017, issue 6
Zainal Abdul Aziz, Zuhaila Ismail, Yahaya Shagaiya Daniel, Faisal Salah