Импакт фактор:
0.404
5-летний Импакт фактор:
0.8
SJR:
0.264
SNIP:
0.504
CiteScore™:
0.88
ISSN Печать: 1064-2285
Выпуски:
Выпуск 1
Выпуск 2
Выпуск 3
Выпуск 4
Выпуск 5
Выпуск 6
Выпуск 7
Выпуск 8
Выпуск 9
Выпуск 10
Выпуск 11
Выпуск 12
Выпуск 13
Выпуск 14
Выпуск 15
Выпуск 16
Выпуск 17
Выпуск 18
Выпуск 1
Выпуск 2
Выпуск 3
Выпуск 4
Выпуск 5
Выпуск 6
Выпуск 7
Выпуск 8
Выпуск 9
Выпуск 10
Выпуск 11
Выпуск 12
Выпуск 13
Выпуск 14
Выпуск 15
Выпуск 16
Выпуск 17
Выпуск 18
Выпуск 1
Выпуск 2
Выпуск 3
Выпуск 4
Выпуск 5
Выпуск 6
Выпуск 7
Выпуск 8
Выпуск 9
Выпуск 10
Выпуск 11
Выпуск 12
Выпуск 13
Выпуск 14
Выпуск 15
Выпуск 16
Выпуск 17
Выпуск 18
Выпуск 1
Выпуск 2
Выпуск 3
Выпуск 4
Выпуск 5
Выпуск 6
Выпуск 7
Выпуск 8
Выпуск 9
Выпуск 10
Выпуск 11
Выпуск 12
|
Heat Transfer Research
DOI: 10.1615/HeatTransRes.2016014017
pages 865-884 EVAPORATION HEAT LOSS IN THE FLAMELET MODEL FOR DILUTE SPRAY FLAMES
Jing Chen
Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, P.R. China
Minming Zhu
Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, P.R. China
Minghou Liu
Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, P.R. China
Yiliang Chen
Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, P.R. China Краткое описаниеThe motivation of this paper is to extend the flamelet/progress variables (FPV) approach used successfully in gaseous flames to spray combustion. To consider the evaporation heat loss effect in the FPV approach, two new methods are proposed. One is to correct the gaseous temperature in the flamelet calculation, and the other is to couple this heat loss into the CFD process. To evaluate their performance, the piloted ethanol-air spray flames are simulated by LES in the Eulerian-Lagrangian framework. The simulation results using these two methods and some other existing models are compared with experimental data. It is shown that both methods give lower gaseous temperature compared to the conventional FPV approach and the mean gaseous temperature is closer to the experimental data especially downstream and near the centerline. As to other statistical results (e.g., the mean velocities and rms velocities and SMD), these methods show similar profiles which are all in good agreement with experimental data. The conclusion is that our models can give a good account of the evaporation heat loss. Meanwhile, much lower computational costs are needed compared to the method of solving the enthalpy equation. Articles with similar content:
HYBRID LES MONTE-CARLO PDF MODELING OF TURBULENT PILOTED JET FLAMES
TSFP DIGITAL LIBRARY ONLINE, Vol.5, 2007, issue Jens Kuehne, Jyh-Yuan Chen, Johannes Janicka, Clemens Olbricht, Amsini Sadiki
HEAT TRANSFER IN FIXED BED CHEMICAL REACTORS
International Heat Transfer Conference 7, Vol.14, 1982, issue Dieter Vortmeyer, D. J. Gunn
DYNAMIC MODEL FOR PHOSPHATE ROTARY DRYER
ICHMT DIGITAL LIBRARY ONLINE, Vol.13, 2008, issue Mohamed Agouzoul, Tarik Raffak, Mustapha Mabsate, Abdellah Chik, Abdelkader Alouani
CAVITATING BUBBLY FLOW COMPUTATIONS BY MEANS OF MIXTURE BALANCE EQUATIONS
3rd Thermal and Fluids Engineering Conference (TFEC), Vol.29, 2018, issue Dia Zeidan, Lucy T. Zhang, Eric Goncalves
Numerical simulations of wall transpiration in pipe flows
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2018, issue H. Ambarlooei, M. J. Rempto |
Портал | Begell Электронная Бибилиотека | e-Книги | Журналы | Справочники и Сборники статей | Коллекции |