Доступ предоставлен для: Guest
Heat Transfer Research

Выходит 18 номеров в год

ISSN Печать: 1064-2285

ISSN Онлайн: 2162-6561

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00072 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.43 SJR: 0.318 SNIP: 0.568 CiteScore™:: 3.5 H-Index: 28

Indexed in

ANALYSIS OF JOULE−THOMSON EFFECT OF CARBON DIOXIDE LEAKAGE THROUGH VERTICAL LEAKY PATHWAYS

Том 47, Выпуск 2, 2016, pp. 177-192
DOI: 10.1615/HeatTransRes.2015010598
Get accessGet access

Краткое описание

The major objective of this work is to investigate the Joule−Thomson effect (J−T effect) of CO2 leakage through vertical porous pathways. A one-dimensional depressurization process model is established, in which the Span−Wagner equation is employed to describe the thermophysical properties of CO2. The effects of heat exchange between CO2 and the surroundings, pressure drop, and the permeability of leaky pathways on the J−T effect are presented for different leakage scenarios. The results indicate that a large temperature drop is present along the leaky pathway due to the drastical variation of the thermophysical properties of CO2. Based on the hierarchical leakage scenarios, the J−T effect always leads to the CO2 temperature profile approaching the CO2 saturation line, whereas the heat exchange between CO2 and the surroundings induces the CO2 temperature profile inclining to the geothermal temperature distribution. A remarkable temperature drop is observed due to the larger pressure drop, although the increase in the permeability of the leaky pathway mitigates the influence of heat transfer on the J−T effect. For the direct leakage scenario, a sharp temperature drop of CO2 appears in the near-surface segment. The inlet depth of the leaky pathway primarily determines the pressure drop, the temperature drop, and the flow rate of CO2 leakage. For different scenarios of CO2 leakage, an in-depth data analysis of the CO2 depressurization process will provide insight into the monitoring and evaluation of CO2 leakage.

ЦИТИРОВАНО В
  1. Mao Yilin, Zeidouni Mehdi, Duncan Ian, Temperature analysis for early detection and rate estimation of CO2 wellbore leakage, International Journal of Greenhouse Gas Control, 67, 2017. Crossref

  2. Khan Abid Hossain, Ahmed Zayed, Islam Md. Shafiqul, Ghosh Angkush Kumar, Evaluation of cooling capability of an eco-cooler: experimental and numerical analyses, Energy Procedia, 160, 2019. Crossref

  3. Deeva V S, Slobodyan S M, The Joule–Thomson effect and the non-equilibrium thermodynamics of sliding nano-contact, IOP Conference Series: Materials Science and Engineering, 1019, 1, 2021. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain