Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Heat Transfer Research
Импакт фактор: 0.404 5-летний Импакт фактор: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Печать: 1064-2285
ISSN Онлайн: 2162-6561

Выпуски:
Том 50, 2019 Том 49, 2018 Том 48, 2017 Том 47, 2016 Том 46, 2015 Том 45, 2014 Том 44, 2013 Том 43, 2012 Том 42, 2011 Том 41, 2010 Том 40, 2009 Том 39, 2008 Том 38, 2007 Том 37, 2006 Том 36, 2005 Том 35, 2004 Том 34, 2003 Том 33, 2002 Том 32, 2001 Том 31, 2000 Том 30, 1999 Том 29, 1998 Том 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2011002695
pages 251-266

Numerical Study of Free Convection Heat Transfer in a Square Cavity with a Fin Attached to Its Cold Wall

Saeid Jani
Department of Mechanical Engineering, Golpayegan University of Technology, Golpayegan, Iran
Meysam Amini
Energy Technologies Research Division, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
Mostafa Mahmoodi
Department of Mechanical Engineering, Amirkabir University of Technology, Tehran 15875-4413, Iran; Department of Mechanical Engineering, University of Kashan, Kashan 87317-53153, Iran

Краткое описание

Fluid flow and natural convection heat transfer in a differentially heated square cavity with a fin attached to its cold wall is investigated numerically. The top and the bottom horizontal walls of the cavity are insulated while the left and right vertical walls of the cavity are maintained at a constant temperature Th and Tc, with Th > Tc, respectively. The governing equations written in terms of the primitive variables are solved numerically using the finite volume method and the SIMPLER algorithm. Using the developed code, a parametric study is performed, and the effects of the Rayleigh number, length of the fin and its position on the flow pattern and heat transfer inside the enclosure are investigated. The results show that for high Rayleigh numbers, a longer fin placing at the middle of the right wall has a more remarkable effect on the flow field and heat transfer inside the cavity.


Articles with similar content:

NATURAL CONVECTION HEAT TRANSFER IN A SQUARE CAVITY CONTAINING A NANOFLUID WITH A BAFFLE UNDER A MAGNETIC FIELD
Heat Transfer Research, Vol.45, 2014, issue 8
Alireza Arab Solghar, M. Davoudian
Magnetohydrodynamic Free Convection Heat Transfer in a Square Enclosure heated from side and cooled from the ceiling
Computational Thermal Sciences: An International Journal, Vol.3, 2011, issue 3
Zeynab Talea'pour, Mostafa Mahmoodi
MHD MIXED CONVECTION IN TRAPEZOIDAL ENCLOSURES FILLED WITH MICROPOLAR NANOFLUIDS
Nanoscience and Technology: An International Journal, Vol.9, 2018, issue 4
Sameh Elsayed Ahmed, Xiaohui Zhang, Zehba A. Raizah, M. A. Mansour, Ahmed Kadhim Hussein
CONTROL OF HEAT TRANSFER AND FLUID FLOW VIA A MOVING FIN IN A TRIANGULAR ENCLOSURE FILLED WITH NANOFLUID
Heat Transfer Research, Vol.50, 2019, issue 2
Borjini Mohamed Naceur, Lioua Kolsi, Hakan F. Öztop, Abdelkarim Aydi, Abdullah A. A. A. Al-Rashed, Nidal Abu-Hamdeh
NUMERICAL STUDY ON THE EFFECT OF MAGNETIC FIELD IN A POROUS ENCLOSURE USING NANOFLUID WITH MID-HORIZONTAL MOVING LID: BRINKMAN-FORCHHEIMER EXTENDED DARCY MODEL
Journal of Porous Media, Vol.21, 2018, issue 5
N. Nithyadevi, A. Shamadhani Begum