Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Heat Transfer Research
Импакт фактор: 0.404 5-летний Импакт фактор: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Печать: 1064-2285
ISSN Онлайн: 2162-6561

Выпуски:
Том 50, 2019 Том 49, 2018 Том 48, 2017 Том 47, 2016 Том 46, 2015 Том 45, 2014 Том 44, 2013 Том 43, 2012 Том 42, 2011 Том 41, 2010 Том 40, 2009 Том 39, 2008 Том 38, 2007 Том 37, 2006 Том 36, 2005 Том 35, 2004 Том 34, 2003 Том 33, 2002 Том 32, 2001 Том 31, 2000 Том 30, 1999 Том 29, 1998 Том 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2016007441
pages 471-488

EFFECTS OF AXIAL MAGNETIC FIELD AND THERMAL CONVECTION ON A COUNTERROTATING VON KARMAN FLOW

Lyes Bordja
Faculte des Sciences et Technologie, Dept. Genie Mecanique, Universite Cheikh Larbi Tebessi, Tebessa-12002, Algeria
Emilia Crespo del Arco
Departamento de Fisica Fundamental, U.N.E.D., Apdo. Correos 60.141, 28080 Madrid, Spain
Eric Serre
Aix-Marseille Universite, CNRS, Ecole Centrale Marseille, Laboratoire M2P2, Marseille, France
Rachid Bessaih
L.E.A.P, Dept. Genie Mecanique, Universite Mentouri de Constantine, Route d'Ain El Bey, 25000 Constantine, Algeria

Краткое описание

The effects of thermal convection and of a constant axial magnetic field on a von Karman flow driven by the exact counterrotation of two lids are investigated in a vertical cylinder of aspect ratio Γ(= height/radius) = 2 at a fixed Reynolds number Re(= Ω R2/v) = 300. Direct numerical simulations are performed when varying separately the Rayleigh and Hartmann numbers in the range [0, 1800] and [0, 20], respectively, in the limit of the Boussinesq approximation and of a small magnetic Reynolds numbers, Rem << 1. Without a magnetic field, the base flow symmetries of the von Karman flow are broken by thermal convection that becomes dominant in the range of Ra [500, 1000]. Three-dimensional solutions are characterized by the occurrence of a steady, m = 1, azimuthal mode exhibiting a cat's eye vortex in the circumferential plane. When increasing the Rayleigh number in the range [500, 1000], the vortex pulsates in an oscillatory manner, due to variations of the flow intensity. Otherwise, increasing the axial magnetic field intensity stabilizes the flow, and the oscillatory motion can be inhibited. Numerical solutions show that the critical Rayleigh number for transition increases linearly with the Hartmann number. Finally, results show that when varying the Rayleigh number, the structure of the electric potential can be strongly modified by thermal convection. Such an observation suggests new induction mechanisms in the case of small nonzero values of the magnetic Reynolds number.


Articles with similar content:

EFFECT OF CURVATURE ON THE THERMAL STABILITY OF A FLUID BETWEEN TWO LONG VERTICAL COAXIAL CYLINDERS
International Heat Transfer Conference 7, Vol.3, 1982, issue
M. N. Ozisik, A. H. Shaaban
Effect of an axial magnetic field on the first transition to unsteady thermal convective regime in a counter-rotating von Kármán flow
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2012, issue
Emilia Crespo del Arco, Lyes Bordja, Demagh Yassine, Eric Serre
CONVECTIVE STABILITY OF MIXED FLOW BETWEEN PERMEABLE CYLINDERS WITH INTERNAL HEAT GENERATION
International Heat Transfer Conference 11, Vol.7, 1998, issue
Remi Vaillancourt, Mohamed S. Ghidaoui, Andrei A. Kolyshkin
LINEAR STABILITY ANALYSIS OF POISEUILLE−RAYLEIGH−BENARD FLOW AFFECTED BY A VERTICAL MAGNETIC FIELD AND A TEMPERATURE FIELD
Heat Transfer Research, Vol.47, 2016, issue 3
Ming-Jiu Ni, Nian-Mei Zhang, Chan Liu
MAGNETOHYDRODYNAMIC FLOW IN A TRUNCATED CONICAL ENCLOSURE
3rd Thermal and Fluids Engineering Conference (TFEC), Vol.3, 2018, issue
Brahim Mahfoud, A. Bendjaghloli