Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Heat Transfer Research
Импакт фактор: 0.404 5-летний Импакт фактор: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Печать: 1064-2285
ISSN Онлайн: 2162-6561

Выпуски:
Том 50, 2019 Том 49, 2018 Том 48, 2017 Том 47, 2016 Том 46, 2015 Том 45, 2014 Том 44, 2013 Том 43, 2012 Том 42, 2011 Том 41, 2010 Том 40, 2009 Том 39, 2008 Том 38, 2007 Том 37, 2006 Том 36, 2005 Том 35, 2004 Том 34, 2003 Том 33, 2002 Том 32, 2001 Том 31, 2000 Том 30, 1999 Том 29, 1998 Том 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2013005903
pages 447-454

EFFECT OF TEMPERATURE ON THE CRATER-LIKE ELECTROSPINNING PROCESS

Yong Liu
Key Laboratory of Advanced Textile Composites, Ministry of Education of China, Tianjin 300387, China; School of Textiles, Tianjin Polytechnic University, 399 West Binshui Road, Xiqing District, Tianjin 300387, China
Wei Liang
School of Textiles, Tianjin Polytechnic University, 399 West Binshui Road, Xiqing District, Tianjin 300387, China
Wan Shou
School of Textiles, Tianjin Polytechnic University, 399 West Binshui Road, Xiqing District, Tianjin 300387, China
Ying Su
School of Textiles, Tianjin Polytechnic University, 399 West Binshui Road, Xiqing District, Tianjin 300387, China
Rui Wang
Key Laboratory of Advanced Textile Composites, Ministry of Education of China, Tianjin 300387, China; School of Textiles, Tianjin Polytechnic University, 399 West Binshui Road, Xiqing District, Tianjin 300387, China

Краткое описание

Most solution electrospinning processes were performed at the ambient temperature. Few hot polymer solutions were used to produce electrospun nanofibers in the traditional electrospinning process, much less in electrospinning processes with a free liquid surface. In this presentation, poly(vinyl alcohol) solutions with different temperatures (20, 35, 50, and 65°C) were employed to fabricate nanofibers in a crater-like electrospinning process. All other electrospinning parameters, such as applied voltage, air pressure, and collective distance, were kept constant. The influence of solution temperature on the electrospinnability of solutions and the quality of prepared nanofibers were assessed. The results showed that the solution temperature exerted an appreciable influence on the viscosity of polymer solution, which in turn influenced the process of prediction of nanofibers and their quality. With increase in the solution temperature, the critical applied voltage and air pressure decreased. An ideal temperature is about 50°C for the production of nanofibers in these experiments. But a higher solution temperature caused a rapid evaporation of solvent in the solution, which caused aggravation of the solution electrospinnability.


Articles with similar content:

Influence of Viscosity on Drag in Presence of Polymer Solutions in Gravity Driven Flow Systemy
International Journal of Fluid Mechanics Research, Vol.40, 2013, issue 6
G. M. J. Raju, P. Srinvasa Rao, V. S. R. K. Prasad, Ch. V. Subbarao
DYNAMIC BEHAVIOR OF AN ADSORPTION COLUMN HEAT EXCHANGER
International Heat Transfer Conference 10, Vol.24, 1994, issue
Y. Mori, Akira Yamada
Response of Silkworm Larvae to Atmospheric Pressure Nonthermal Plasma Irradiation
Plasma Medicine, Vol.6, 2016, issue 3-4
Thapanut Sarinont, Yosuke Wada, Masaharu Shiratani, Kazunori Koga
AN EXPERIMENTAL STUDY OF A WATER DROPLET IMPACTING ON A ROTATING WAFER
Atomization and Sprays, Vol.19, 2009, issue 10
Fu-Chu Chou, K.-W. Lee, Tain Shi Zen
Frictional Torque and Wear of Retrieved Hip Prostheses: A Comparison Between Alumina/PE and Co-Cr/PE Prostheses
Journal of Long-Term Effects of Medical Implants, Vol.12, 2002, issue 1
Yoshio Shirasaki, Isao Hirose, Atsushi Kusaba, Yoshikatsu Kuroki, Jorg Scholz, Saiji Kondo, Tetsuta Tateishi, Yuichi Ito