Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Heat Transfer Research
Импакт фактор: 0.404 5-летний Импакт фактор: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Печать: 1064-2285
ISSN Онлайн: 2162-6561

Выпуски:
Том 50, 2019 Том 49, 2018 Том 48, 2017 Том 47, 2016 Том 46, 2015 Том 45, 2014 Том 44, 2013 Том 43, 2012 Том 42, 2011 Том 41, 2010 Том 40, 2009 Том 39, 2008 Том 38, 2007 Том 37, 2006 Том 36, 2005 Том 35, 2004 Том 34, 2003 Том 33, 2002 Том 32, 2001 Том 31, 2000 Том 30, 1999 Том 29, 1998 Том 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018026458
pages 89-105

THERMOHYDRAULIC CHARACTERISTICS OF MICROCHANNEL HEAT SINKS COMBINED WITH RIBS AND CAVITIES: EFFECTS OF GEOMETRIC PARAMETERS AND HEAT FLUX

Cong Li
Department of Process Equipment and Control Engineering, School of Mechanical Engineering, Xiangtan University, Xiangtan 411105, People's Republic of China
Hong-Ju Guo
Department of Process Equipment and Control Engineering, School of Mechanical Engineering, Xiangtan University, Xiangtan 411105, People's Republic of China
Wei-Biao Ye
Department of Process Equipment and Control Engineering, School of Mechanical Engineering, Xiangtan University, Xiangtan 411105, People's Republic of China
Yuxiang Hong
Department of Chemistry and Chemical Engineering, Lishui University, Lishui 323000, People's Republic of China
Si-Min Huang
Key Laboratory of Distributed Energy Systems of Guangdong Province, Department of Energy and Chemical Engineering, Dongguan University of Technology, Dongguan 523808, People's Republic of China

Краткое описание

The effects of the geometric parameters and heat flux on the thermohydraulic characteristics of microchannel heat sinks combined with ribs and cavities are investigated numerically. The numerical study is performed under conditions of laminar flow with conjugate heat transfer between silicon and water. In order to find the optimum substrate thickness, ratios of substrate thickness to microchannel height (Hs/Hc = 0, 0.25, 0.50, 0.75, 1.00, 1.25, and 1.50) are investigated. It is found that the temperature of the substrate surface firstly decreases and then gradually increases, the minimum temperature of the substrate surface occurs with Hs/Hc = 0.25. Furthermore, the microchannel heat sinks are studied at rib width to the spacing ratios (Lr/Sr = 0.25, 0.50, 0.75, and 1.0), rib heights to parallel sidewalls width ratios (Hr/Wc = 0.10, 0.15, 0.20, and 0.25), spacing to the parallel sidewalls width ratios (Sr/Wc = 4, 8, 12, and 16) and heat fluxes (qw = 50, 100, 150, 200, 250, and 300 W cm–2). The results show that the Performance Evaluation Criterion (PEC) is continued to slowly decrease with increase of qw. For all cases of qw, the maximum value of PEC occurs in model 2 with Lr/Sr = 0.50, Hr/Wc = 0.20, and Sr/Wc = 4. For Re > 320, the wall temperature of model 1 is slightly smaller than that of model 2.


Articles with similar content:

BUOYANCY RATIO AND POROSITY EFFECTS ON AIDING AND OPPOSING DOUBLE-DIFFUSIVE CONVECTION IN POROUS MEDIA
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2017, issue
Marcelo J. S. de Lemos, Paulo H.S. Carvalho
THE EFFECTS OF POROSITY AND MASS-TO-THERMAL DRIVE RATIO ON AIDING AND OPPOSING CONVECTION IN POROUS ENCLOSURES
Journal of Enhanced Heat Transfer, Vol.25, 2018, issue 4-5
Marcelo J. S. de Lemos, Paulo H.S. Carvalho
LAMINAR FREE CONVECTION BETWEEN TWO VERTICAL PARALLEL PLATES WITH DIFFERENT RIB HEIGHTS AND POSITIONS
International Heat Transfer Conference 16, Vol.9, 2018, issue
Viktor I. Terekhov, Khalil F. Yassin, Ali L. Ekaid
HEAT TRANSFER IN COMBINED MICROCHANNEL WITH CONE-SHAPED MICRO PIN FINS BASED ON ENTROPY GENERATION ANALYSIS
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2017, issue
Yifan Li, Luxiang Zong, Yuting Jia, Guodong Xia
NUMERICAL STUDY OF p − n INTERFACE EFFECTS
International Journal for Multiscale Computational Engineering, Vol.13, 2015, issue 2
J.-H. Jung, H. Kim, J. W. Ha, Seong Min Kim, J. B. Kim, J.-H. Kwon, J.-H. Bae