Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Heat Transfer Research
Импакт фактор: 0.404 5-летний Импакт фактор: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Печать: 1064-2285
ISSN Онлайн: 2162-6561

Выпуски:
Том 50, 2019 Том 49, 2018 Том 48, 2017 Том 47, 2016 Том 46, 2015 Том 45, 2014 Том 44, 2013 Том 43, 2012 Том 42, 2011 Том 41, 2010 Том 40, 2009 Том 39, 2008 Том 38, 2007 Том 37, 2006 Том 36, 2005 Том 35, 2004 Том 34, 2003 Том 33, 2002 Том 32, 2001 Том 31, 2000 Том 30, 1999 Том 29, 1998 Том 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2011002483
pages 359-377

Lattice Boltzmann Method for Laminar Forced Convection in a Channel with a Triangular Prism

Ali Cemal Benim
Duesseldorf University of Applied Sciences
E. Aslan
Department of Mechanical Engineering, Sakarya University, TR-54187 Sakarya, Turkey
I. Taymaz
Department of Mechanical Engineering, Sakarya University, TR-54187 Sakarya, Turkey

Краткое описание

The Lattice Boltzmann Method (LBM) is applied to computationally investigate the laminar flow and heat transfer of an incompressible fluid with constant material properties in a two-dimensional channel with a built-in triangular prism. Not only the momentum transport, but also the energy transport is modeled by LBM. A uniform lattice structure with a single time relaxation rule is used. The flow is investigated for different Reynolds numbers, while keeping the Prandtl number at a constant value of 0.7. The results show how the presence of a triangular prism affects the flow and heat transfer patterns for the steady-state and unsteady/periodic flow regimes. As an assessment of the accuracy of the developed LBM code, the results are compared with those obtained by a commercial CFD code. It is observed that the present LBM code delivers results that are of similar accuracy to the well-established CFD code.


Articles with similar content:

AUGMENTATION OF HEAT TRANSFER IN A CHANNEL USING A TRIANGULAR PRISM WITH VARYING INLET TURBULENT INTENSITY
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
Sudhir Murmu, Himadri Chattopadhyay
MIXED CONVECTION OF NANOFLUID OVER A BACKWARD FACING STEP UNDER THE EFFECTS OF A TRIANGULAR OBSTACLE AND INCLINED MAGNETIC FIELD
Computational Thermal Sciences: An International Journal, Vol.10, 2018, issue 6
Hakan F. Öztop, Fatih Selimefendigil
Criterion for Local Thermal Equilibrium in Forced Convection Flow Through Porous Media
Journal of Porous Media, Vol.12, 2009, issue 11
Zhichun Liu, Xuewei Zhang, Wei Liu
A 3D Lattice Boltzmann Method for Simulation of Fluid Flow in Porous Media
International Journal of Fluid Mechanics Research, Vol.41, 2014, issue 3
Mehrdad Naderi Beni, Ahmad Reza Rahmati
ICING STUDY OF SUPER COOLED WATER DROPLET IMPINGING ON AIRFOIL USING E-MPS METHODD
3rd Thermal and Fluids Engineering Conference (TFEC), Vol.20, 2018, issue
Daiki Toba, Naoya Fukushima, Hiroya Mamori, Makoto Yamamoto