Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Heat Transfer Research
Импакт фактор: 0.404 5-летний Импакт фактор: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Печать: 1064-2285
ISSN Онлайн: 2162-6561

Выпуски:
Том 50, 2019 Том 49, 2018 Том 48, 2017 Том 47, 2016 Том 46, 2015 Том 45, 2014 Том 44, 2013 Том 43, 2012 Том 42, 2011 Том 41, 2010 Том 40, 2009 Том 39, 2008 Том 38, 2007 Том 37, 2006 Том 36, 2005 Том 35, 2004 Том 34, 2003 Том 33, 2002 Том 32, 2001 Том 31, 2000 Том 30, 1999 Том 29, 1998 Том 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.v41.i8.70
pages 889-900

Experimental Study of Heat Transfer from Impinging Jet with Upstream and Downstream Crossflow

Daniel Thibault
Laboratoire d'Etudes Thermiques - UMR CNRS 6608 ENSMA - University of Poitiers, BP 40109 - 86961 Chasseneuil Cedex France
Matthieu Fenot
Institut Pprime, Departement Fluides, Thermique et Combustion. Laboratoire d'Etudes Thermiques - UMR CNRS 6608 ENSMA - University of Poitiers, BP 40109 - 86961 Chasseneuil Cedex France
Gildas Lalizel
Institut Pprime, Departement Fluides, Thermique et Combustion. Laboratoire d'Etudes Thermiques - UMR CNRS 6608 ENSMA - University of Poitiers, BP 40109 - 86961 Chasseneuil Cedex France
Eva Dorignac
Institut Pprime, Departement Fluides, Thermique et Combustion. Axe COST. ENSMA - Universite de Poitiers - BP 40109. 1, avenue Clement ADER. 86961 Futuroscope CHASSENEUIL cedex

Краткое описание

Numerous geometrical and flow parameters can affect the heat transfer in the impinging jet cooling methods. In this study, a configuration close to a real case of vane cooling was adopted. It consists of a main crossflow flowing into an injection hole of diameter D perpendicular to the main flow through a thin plate of thickness t equal to D and the Reynolds number of the injection is fixed to 23,000. A secondary crossflow with a Reynolds number of 1000 is fixed between the exit of the jet and the impingement region, to simulate the flow stream evacuation from the leading edge to the trailing edge of the vane. This geometry is very different from a jet issued from a long pipe as described in many previous studies. The flow field of the jet in the present case has a three-dimensional behavior due to its complex geometry. High levels of turbulence at the exit of the nozzle are observed with Particle Image Velocimetry measurements. The fields of the reference temperature and convective heat transfer coefficient on the impingement surface are calculated from infrared thermography measurements. The results show a significant drop of the heat transfer in such geometry.


Articles with similar content:

EXPERIMENTAL STUDY OF HEAT TRANSFER FROM IMPINGING JET WITH UPSTREAM AND DOWNSTREAM CROSSFLOW
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2009, issue
Eva Dorignac, Daniel Thibault, Matthieu Fenot, Gildas Lalizel
FLUID FLOW AND HEAT TRANSFER CHARACTERISTICS OF A SWIRL JET IMPINGING ON A FLAT PLATE
International Heat Transfer Conference 13, Vol.0, 2006, issue
Juliana Kuhlmann Abrantes, Luis Fernando A. Azevedo
Dynamic and Heat Transfer of Lobed Impinging Jets
International Heat Transfer Conference 15, Vol.23, 2014, issue
David Lo Jacono, Denis Brouilliot
Time- and Space-Averaged Convective Heat Transfer from the Surface of a Circular Cylinder in an Oscillating Flow
International Heat Transfer Conference 12, Vol.25, 2002, issue
Kazuyoshi Nakabe, Tomoyuki Mambo, Hiroshi Iwai, Kenjiro Suzuki
PIV STUDY OF RADIAL WALL JET FORMED BY A NORMALLY IMPINGING TURBULENT SYNTHETIC JET
Journal of Flow Visualization and Image Processing, Vol.26, 2019, issue 2
Amit Agrawal, Udaysinh S. Bhapkar , Harekrishna Yadav