Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Heat Transfer Research
Импакт фактор: 0.404 5-летний Импакт фактор: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Печать: 1064-2285
ISSN Онлайн: 2162-6561

Выпуски:
Том 51, 2020 Том 50, 2019 Том 49, 2018 Том 48, 2017 Том 47, 2016 Том 46, 2015 Том 45, 2014 Том 44, 2013 Том 43, 2012 Том 42, 2011 Том 41, 2010 Том 40, 2009 Том 39, 2008 Том 38, 2007 Том 37, 2006 Том 36, 2005 Том 35, 2004 Том 34, 2003 Том 33, 2002 Том 32, 2001 Том 31, 2000 Том 30, 1999 Том 29, 1998 Том 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2016016562
pages 1003-1022

EVALUATION OF THE PERFORMANCE OF CAVITIES IN NUCLEATE BOILING AT MICROSCALE LEVEL

Yu-Tong Mu
School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
Li Chen
Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
Qin-Jun Kang
Computational Earth Science Group (EES-16), Los Alamos National Laboratory, Los Alamos, NM, USA
Wen-Quan Tao
State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xian Jiaotong University, Xian 710049, China

Краткое описание

Nucleate boiling heat transfer (NBHT) from enhanced structures is an effective way to dissipate a high heat flux. In the present study, the behavior of cavities with nucleation on roughened surfaces is studied numerically during the entire ebullition cycle based on the phase-change lattice Boltzmann method. The adopted model is firstly validated by the Laplace law and the two-phase coexistence curve and then is applied to investigate the effects of the cavity structure on NBHT. The bubble departure diameter, departure frequency, and the total boiling heat flux of the ebullition cycle are also studied. It is shown that the cavity widths and the cavity grooves exhibit a significant influence on the NBHT features. A cavity with a circular groove in the present research shows the best performance for NBHT in terms of the averaged heat flux and bubble release frequency. When a specific cavity is combined with other different cavities on roughened surfaces, its nucleation process on different roughened surfaces may differ greatly.


Articles with similar content:

BUBBLE DYNAMICS AND POOL BOILING PERFORMANCE ON BIPHILIC PATTERNED SURFACES
International Heat Transfer Conference 16, Vol.4, 2018, issue
Donghwi Lee, Dong Il Shim, Geehong Choi, Namkyu Lee, Hyung-Hee Cho
EXPERIMENTAL PARAMETERS IDENTIFICATION OF A FLEXIBLE CYLINDER UNDERGOING VORTEX-INDUCED VIBRATIONS
3rd Thermal and Fluids Engineering Conference (TFEC), Vol.15, 2018, issue
Ricardo Romero-Mendez, Cintia Monreal-Jimenez, Robert Jackel, Geydy Luz Gutierrez-Urueta, Francisco Oviedo-Tolentino
A THEORETICAL MODEL FOR BUBBLE FREQUENCY IN NUCLEATE POOL BOILING INCLUDING SURFACE EFFECTS
International Heat Transfer Conference 6, Vol.1, 1978, issue
Ross L. Judd, M. S. M. Shoukri
Modeling of Nanoporous Membranes for High Flux Thin Film Evaporation
International Heat Transfer Conference 15, Vol.19, 2014, issue
Rong Xiao, Daniel Hanks, Zhengmao Lu, Evelyn N. Wang, Rishi Raj, Dion S. Antao, Shankar Narayanan
Low Frequency Capillary Effect and Mechanism of Heat Transfer in Boiling
Heat Transfer Research, Vol.33, 2002, issue 3&4
E. A. Kolomiets, I. A. Krivolapov, G. R. Kudritskii