Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Journal of Porous Media
Импакт фактор: 1.49 5-летний Импакт фактор: 1.159 SJR: 0.504 SNIP: 0.671 CiteScore™: 1.58

ISSN Печать: 1091-028X
ISSN Онлайн: 1934-0508

Выпуски:
Том 22, 2019 Том 21, 2018 Том 20, 2017 Том 19, 2016 Том 18, 2015 Том 17, 2014 Том 16, 2013 Том 15, 2012 Том 14, 2011 Том 13, 2010 Том 12, 2009 Том 11, 2008 Том 10, 2007 Том 9, 2006 Том 8, 2005 Том 7, 2004 Том 6, 2003 Том 5, 2002 Том 4, 2001 Том 3, 2000 Том 2, 1999 Том 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.2018028698
pages 37-52

ASSESSMENT OF CAPILLARY PRESSURE ESTIMATE BASED ON FLUID-FLUID INTERFACE CURVATURE

Marzio Piller
Department of Engineering and Architecture, University of Trieste, via A. Valerio 10, 34127 Trieste (TS), Italy
Gianni Schena
Department of Engineering and Architecture, University of Trieste, via A. Valerio 10, 34127 Trieste (TS), Italy
Diego Casagrande
Department of Geotechnology, Delft University of Technology, 2628 CN Delft, Netherlands
Pacelli L.J. Zitha
Helmholz Zentrum fur Umweltforschung, Permoserstr. 15, 04318, Leipzig, Germany; Delft University of Technology, Department of Geotechnology, 2628 CN Delft, The Netherlands

Краткое описание

Highresolution X-ray tomography can be used to measure the local mean curvature of fluid–fluid interfaces within the pores of opaque, permeable porous media. Thereof, the pore-scale capillary pressure can be estimated via the Young–Laplace equation. We critically review the aforementioned method by processing experimental data acquired with an X-ray cone-beam laboratory station and compare capillary pressure estimates with results of pore-scale numerical simulations. The method looks promising but is rather sensitive to the attainment of an equilibrium state for the fluid mixture and to the numerical calculation of curvature. Numerical simulation results provide evidence that dynamic effects result in a larger discrepancy between values of the capillary pressure computed from first principles (i.e., pressure difference across the interface) and from geometric considerations (i.e., curvature estimation and Young–Laplace equation).


Articles with similar content:

PERMEABILITY ESTIMATION OF NANO-POROUS MEMBRANES FOR NONWETTING FLUIDS
Journal of Porous Media, Vol.13, 2010, issue 4
John W. Gillespie Jr., Dirk Heider, Solange C. Amouroux
An Improved Capillary Bundle Model by Using Tortuosity and Parameters Extracted from Pore Network Model
International Heat Transfer Conference 15, Vol.40, 2014, issue
Yu Liu, Yongchen Song, Lingyu Chen, Xinhuan Zhou, Lanlan Jiang, Meiheriayi Mutailipu
NUMERICAL INVESTIGATION ON THE COOLING PERFORMANCE AND CONFIGURATION OPTIMIZATION OF TRANSPIRATION COOLING WITH PHASE CHANGE
International Heat Transfer Conference 16, Vol.21, 2018, issue
Fei He, Bangcheng Ai, Liang Chen, Hao Su, Jianhua Wang
INCORPORATING GRAVITY DRAINAGE AND REIMBIBITION MECHANISMS IN TRADITIONAL MATERIAL BALANCE EQUATION FOR FRACTURED OIL RESERVOIRS: MATHEMATICAL MODELING AND SIMULATION ANALYSIS
Journal of Porous Media, Vol.22, 2019, issue 3
Bahram Dabir, Negin Rahmati, Farshid Torabi, Mohammad Reza Rasaei
Edge Detection in Real Images Using a Neural Network Approach
Telecommunications and Radio Engineering, Vol.64, 2005, issue 7-12
Gerardo Trejo-Caballero, Arturo Perez-Garcia, Victor Ayala-Ramirez, Raul E. Sanchez-Yanez