Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Journal of Porous Media
Импакт фактор: 1.49 5-летний Импакт фактор: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Печать: 1091-028X
ISSN Онлайн: 1934-0508

Выпуски:
Том 22, 2019 Том 21, 2018 Том 20, 2017 Том 19, 2016 Том 18, 2015 Том 17, 2014 Том 16, 2013 Том 15, 2012 Том 14, 2011 Том 13, 2010 Том 12, 2009 Том 11, 2008 Том 10, 2007 Том 9, 2006 Том 8, 2005 Том 7, 2004 Том 6, 2003 Том 5, 2002 Том 4, 2001 Том 3, 2000 Том 2, 1999 Том 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v21.i3.40
pages 241-256

THE STUDY ON THE DISTRIBUTION LAW OF INTERWELL PRESSURE GRADIENT CONSIDERING THE INFLUENCE OF PROFILE CONTROL AND WATER SHUTOFF

Qiang Fu
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu City, Sichuan Province, P.R. China 610500
Zhimin Du
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu City, Sichuan Province, P.R. China 610500
Shuoliang Wang
School of Energy Resources, China University of Geosciences, Beijing, 100083, China; Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Enrichment Mechanism, Ministry of Education

Краткое описание

Profile modification is an efficient method used to improve the areal sweep efficiency of water flooding. An accurate description of the pressure gradient between the injection and production wells is important for selecting the proper type of plugging agents and optimizing their dosages during the profile modification process. Currently, the pressure gradient between the injection and production wells is evaluated based on the model, which describes the flow of compressible fluids in porous media. Such a model can take the reservoir heterogeneity into account; however, the effect of profile control and water shutoff is not considered. The computation complexity is greatly increased due to the plugging agent's propagation into channel zones. In this article, a two-dimensional plate model with 64 pressure measurement probes is used to study the pressure gradient during the water flooding stage and after profile control and water shutoff. A chemical-flooding compositional simulation model is used to calculate the interwell pressure gradient, which takes into account the high permeable zone and profile modification. The influence of different geological conditions and operating conditions on the interwell pressure gradient is analyzed. As demonstrated in this article, the plugging agent slug sustained the major pressure drop between the injection and production wells, and the interwell pressure gradient was influenced much more by profile modification than by the permeability of the high permeable zone. The range of fewer than 10 m from the bottom of the well is the main pressure drop zone. It is recommended to inject a 10-m displacement slug after injecting the major gels.


Articles with similar content:

SCALING OF GAS-OIL GRAVITY DRAINAGE MECHANISM IN FRACTURED RESERVOIRS EMPLOYING THE EXTENDED MATERIAL BALANCE EQUATION
Journal of Porous Media, Vol.22, 2019, issue 11
Negin Rahmati, Mohammad-Reza Rasaei
STUDY ON FLUID FLOW IN SANSTONE RESERVOIRS WITH MULTI-LEVEL FLOW MEDIUM
First Thermal and Fluids Engineering Summer Conference, Vol.19, 2015, issue
Yuetian Liu, YanFeng Liu, Wenkuan Zheng
SIMULATION OF SPONTANEOUS IMBIBITION PROCESS IN TIGHT POROUS MEDIA WITH COMPLEX DISCRETE FRACTURE NETWORK
Special Topics & Reviews in Porous Media: An International Journal, Vol.7, 2016, issue 4
Junchao Li, Shujun Li, Zhengdong Lei, Changbing Tian
EFFECT OF ORIENTATION OF STRATA ON MACROSCOPIC SWEEP EFFICIENCY OF WATER/POLYMER FLOODING IN LAYERED POROUS MEDIA
Journal of Porous Media, Vol.14, 2011, issue 9
Benyamin Yadali Jamaloei, Riyaz Kharrat, Hamid Emami-Meybodi
QUANTIFYING THE ROLE OF PORE GEOMETRY AND MEDIUM HETEROGENEITY ON HEAVY OIL RECOVERY DURING SOLVENT/CO-SOLVENT FLOODING INWATER-WET SYSTEMS
Journal of Porous Media, Vol.14, 2011, issue 4
S. Vossoughi, Ali Akbar Dehghan, Mohammad Hossein Ghazanfari, Riyaz Kharrat