Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Journal of Porous Media
Импакт фактор: 1.49 5-летний Импакт фактор: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Печать: 1091-028X
ISSN Онлайн: 1934-0508

Выпуски:
Том 23, 2020 Том 22, 2019 Том 21, 2018 Том 20, 2017 Том 19, 2016 Том 18, 2015 Том 17, 2014 Том 16, 2013 Том 15, 2012 Том 14, 2011 Том 13, 2010 Том 12, 2009 Том 11, 2008 Том 10, 2007 Том 9, 2006 Том 8, 2005 Том 7, 2004 Том 6, 2003 Том 5, 2002 Том 4, 2001 Том 3, 2000 Том 2, 1999 Том 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v17.i3.70
pages 269-278

EFFECT OF THERMAL RADIATION ON NON-DARCY NATURAL CONVECTION FROM A VERTICAL CYLINDER EMBEDDED IN A NANOFLUID POROUS MEDIA

S.M.M. EL-Kabeir
Department of Mathematics, Salman bin Abdulaziz University, College of Science and Humanity Studies, Al-Kharj, 11942, Saudi Arabia; Department of Mathematics, Aswan University, Faculty of Science, 81528, Egypt
Ali J. Chamkha
Department of Mechanical Engineering, Prince Sultan Endowment for Energy and Environment, Prince Mohammad Bin Fahd University, Al-Khobar 31952, Kingdom of Saudi Arabia; RAK Research and Innovation Center, American University of Ras Al Khaimah, United Arab Emirates, 10021
Ahmed M. Rashad
Department of Mathematics, Aswan University, Faculty of Science, Aswan, 81528, Egypt

Краткое описание

The objective of the present work is to investigate theoretically the effects of thermal radiation and the nonlinear Forchheimer terms on boundary-layer flow and heat transfer by non-Darcy natural convection from a vertical cylinder embedded in a porous medium saturated with nanofluids. A model is developed to analyze the behavior of nanofluids taking into account the solid volume fraction parameter. The cylinder surface is maintained at a constant temperature and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. The resulting governing equations are nondimensionalized and transformed into a nonsimilar form and then solved numerically by an efficient implicit finite-difference method. Comparisons with previously published work are performed and excellent agreement is obtained. A parametric study of the physical parameters is conducted and a representative set of numerical results for the velocity, temperature profiles, and the local Nusselt number is illustrated graphically to show interesting features of the solutions.