Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Journal of Porous Media
Импакт фактор: 1.752 5-летний Импакт фактор: 1.487 SJR: 0.43 SNIP: 0.762 CiteScore™: 2.3

ISSN Печать: 1091-028X
ISSN Онлайн: 1934-0508

Выпуски:
Том 23, 2020 Том 22, 2019 Том 21, 2018 Том 20, 2017 Том 19, 2016 Том 18, 2015 Том 17, 2014 Том 16, 2013 Том 15, 2012 Том 14, 2011 Том 13, 2010 Том 12, 2009 Том 11, 2008 Том 10, 2007 Том 9, 2006 Том 8, 2005 Том 7, 2004 Том 6, 2003 Том 5, 2002 Том 4, 2001 Том 3, 2000 Том 2, 1999 Том 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v14.i8.50
pages 709-720

THE GAS-OIL GRAVITY DRAINAGE MODEL IN A SINGLE MATRIX BLOCK: A NEW RELATIONSHIP BETWEEN RELATIVE PERMEABILITY AND CAPILLARY PRESSURE FUNCTIONS

Morteza Dejam
Department of Petroleum Engineering, College of Engineering and Applied Science, University of Wyoming, 1000 E. University Avenue, Laramie, Wyoming 82071-2000, USA
Mohammad Hossein Ghazanfari
Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
Mohammadreza Kamyab
Department of Petroleum Engineering, Curtin University, Bentley, WA, Australia
Mohsen Masihi
Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran

Краткое описание

This work concerns modeling of gas-oil gravity drainage for a single block of naturally fractured reservoirs. The non-linearity induced from saturation-dependant capillary pressure and relative permeability functions makes a gravity drainage model difficult to analytically and numerically solve. Relating the capillary pressure and relative permeability functions is a potential method to overcome this problem. However, no attempt has been made in this regard. In this study a generalized one-dimensional form of gas-oil gravity drainage model in a single matrix block, presented in the literature, is considered. In contrast with commonly used forms of capillary pressure and relative permeability functions, more realistic models, which are in power law, are used in the model. It has been found that the nonlinearity of the generalized model is canceled only if the powers of capillary pressure and relative permeability functions are related as n = m + 1. The Fourier Laplace inversion method is applied to numerically solve the developed model and generate the drainage flow rate and the oil saturation profiles at different values of m and n powers. The results of this work might help to obtain a new transfer function for a dual-porosity model, which might improve the reliability of simulators for evaluation of naturally fractured reservoirs.


Articles with similar content:

NONLINEAR SEEPAGE MODEL FOR MULTIPLE FRACTURED HORIZONTAL WELLS WITH THE EFFECT OF THE QUADRATIC GRADIENT TERM
Journal of Porous Media, Vol.21, 2018, issue 3
Ping Guo, Junjie Ren
NON-EQUILIBRIUM MODEL OF GRAVITY DRAINAGE IN A SINGLE BLOCK
Journal of Porous Media, Vol.16, 2013, issue 6
Mohsen Masihi, S. Jahanbakhshi, Mohammad Hossein Ghazanfari
A FULL APPROXIMATE ANALYTIC SOLUTION TO THE PROBLEM OF SPONTANEOUS IMBIBITION IN POROUS MEDIA
Special Topics & Reviews in Porous Media: An International Journal, Vol.7, 2016, issue 2
Abouzar Mirzaei-Paiaman
Capillary Effects and Multiphase Flow in Porous Media
Journal of Porous Media, Vol.1, 1998, issue 1
F. A. L. Dullien
AN APPROXIMATE ANALYTICAL SOLUTION FOR ONE-DIMENSIONAL IMBIBITION PROBLEM IN LOW-PERMEABILITY POROUS MEDIA
Journal of Porous Media, Vol.23, 2020, issue 7
Lu Li, Zhi-Feng Liu, Jin-Biao Yu, Xiao-Hong Wang, Min Wang, Wei-Dong Cao, An-Feng Shi