Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Journal of Porous Media
Импакт фактор: 1.49 5-летний Импакт фактор: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Печать: 1091-028X
ISSN Онлайн: 1934-0508

Выпуски:
Том 22, 2019 Том 21, 2018 Том 20, 2017 Том 19, 2016 Том 18, 2015 Том 17, 2014 Том 16, 2013 Том 15, 2012 Том 14, 2011 Том 13, 2010 Том 12, 2009 Том 11, 2008 Том 10, 2007 Том 9, 2006 Том 8, 2005 Том 7, 2004 Том 6, 2003 Том 5, 2002 Том 4, 2001 Том 3, 2000 Том 2, 1999 Том 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v16.i4.80
pages 367-380

IMPLICATIONS OF PLACING A POROUS BLOCK IN A MIXED-CONVECTION HEAT-TRANSFER, LID-DRIVEN CAVITY HEATED FROM BELOW

Abdalla M. AlAmiri
Mechanical Engineering Department, United Arab Emirates University

Краткое описание

The current numerical study investigates the characteristics of an incompressible laminar, mixed-convection heat transfer in a square lid-driven cavity in the presence of a porous block. The cavity consists of two adiabatic vertical boundaries, a cold top lid that is sliding rightward at a constant speed, and a heated bottom boundary. The governing transport equations within the porous media were treated according to the volume-average theory, while Navier-Stokes equations were employed to represent the transport phenomena in the rest of the cavity. Further, the governing equations were solved using a finite element formulation based on the Galerkin method of weighted residuals. Comparisons of streamlines, isotherms, and average Nusselt number were exhibited to show the impact of the Richardson number, porous block size, and location on the transport phenomena within the cavity. The increase of Richardson number brings about an appreciated increase in natural convection effects, which enhances flow mixing and heat-transfer rate. Moreover, the presence of the porous block results in an appreciated increase in Nusselt number when compared against the case with no block, especially for Ri ≈ 1. What is more, the considered blockage ratios of 0.125, 0.25, and 0.5 show close Nusselt number predictions between the two aforementioned cases. It was interesting to notice that the latter third case falls considerably behind in Nusselt number predictions for Ri < 1 but it surpasses them when Ri exceeds 7. Finally, the optimal heattransfer results were obtained when placing the porous block at the center of the cavity for Ri ≤ 1 while placing it at the bottom section rendered the same objective for Ri > 1.

Ключевые слова: lid-driven cavity, mixed convection, porous media

Articles with similar content:

MIXED CONVECTION JET IMPINGEMENT COOLING OF A RECTANGULAR SOLID HEAT SOURCE IMMERSED IN A POROUS LAYER
Journal of Porous Media, Vol.18, 2015, issue 4
Nawaf H. Saeid
NUMERICAL ANALYSIS OF MIXED CONVECTION HEAT TRANSFER IN PULSATING FLOW FOR A HORIZONTAL CHANNEL WITH A CAVITY HEATED FROM VERTICAL SIDE AND BELOW
Heat Transfer Research, Vol.43, 2012, issue 6
A. Yurddas, Fatih Selimefendigil
MIXED CONVECTION AND ITS INTERACTION WITH SURFACE RADIATION IN A DIFFERENTLY HEATED ENCLOSURE: A CRITICAL APRAISAL
Heat Transfer Research, Vol.44, 2013, issue 6
Amitava Sarkar, Swarup Kumar Mahapatra, Sikata Samantaray
FLOW INTO VERTICAL CHANNELS IN THE PRESENCE OF BLOCKS: HEAT TRANSFER CHARACTERISTICS
Heat Transfer Research, Vol.45, 2014, issue 1
Bekir S. Yilbas, S. Z. Shuja
AUGMENTATION OF A HEAT REJECTION MECHANISM IN A VENTILATED ENCLOSURE FILLED PARTIALLY WITH A POROUS LAYER
Journal of Porous Media, Vol.15, 2012, issue 9
Khalil Khanafer, A. Al-Amiri