Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Journal of Porous Media
Импакт фактор: 1.752 5-летний Импакт фактор: 1.487 SJR: 0.43 SNIP: 0.762 CiteScore™: 2.3

ISSN Печать: 1091-028X
ISSN Онлайн: 1934-0508

Выпуски:
Том 23, 2020 Том 22, 2019 Том 21, 2018 Том 20, 2017 Том 19, 2016 Том 18, 2015 Том 17, 2014 Том 16, 2013 Том 15, 2012 Том 14, 2011 Том 13, 2010 Том 12, 2009 Том 11, 2008 Том 10, 2007 Том 9, 2006 Том 8, 2005 Том 7, 2004 Том 6, 2003 Том 5, 2002 Том 4, 2001 Том 3, 2000 Том 2, 1999 Том 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v14.i5.30
pages 395-409

INVESTIGATING ROCK-FACE BOUNDARY EFFECTS ON CAPILLARY PRESSURE AND RELATIVE PERMEABILITY MEASUREMENTS

O. A. Al-Omair
Department of Petroleum Engineering, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
S. M. Al-Mudhhi
Department of Petroleum Engineering, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
M. M. Al-Dousari
Department of Petroleum Engineering, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait

Краткое описание

This paper covers the experimental study of water-gas capillary pressure and relative permeability in laboratory scale using the centrifuge spinning disk method to investigate the rock-face boundary effects. The capillary pressure wetting-phase saturation data were first generated using both the centrifuge spinning disk setup and the porous plate setup for the same samples. These measurements are performed to validate the accuracy of the centrifuge spinning disk method. Using the measured capillary pressure data, relative permeability relationships were estimated for each sample by history-matching production and saturation distribution data. The production data was monitored for each disk-shaped rock sample using two different experimental conditions—one by sealing the top and bottom faces of the sample and the other without sealing the rock faces. This is done to investigate the effects of sealing the tested samples on the measured data and ultimately on the relative permeability. Results show that the measured capillary pressure data generated using the spinning disk method are in agreement with the capillary pressure data generated with the porous plate method. Results also showed that the gas and brine relative permeabilities are independent of the rock sealing conditions. The average variation between the two methods used was in the order of 2% with a standard deviation of 2.2%. Capillary pressure data measured using cases with unsealed boundaries were practically a reproduction of capillary pressure data for the same core samples with sealed boundaries. The average variation between these methods was approximately 2.3% with a standard deviation of 2.6%. Capillary pressure and relative permeability are of great importance to petroleum engineers attempting to understand and predict the behavior of various petroleum recovery processes. Accurate determination of relative permeability data is essential for estimating the free water saturation, aiding in evaluating drill-stem and production tests, and estimating the residual saturations. This accuracy of the capillary pressure data and the precession of generated relative permeability data is a consequence of the refinement of the spinning disk setup. The improvement consists of modification of the core holder and adaptation of better lighting conditions. With this procedure, direct determination of capillary pressure saturation data is possible for the equilibrium saturation distribution.


Articles with similar content:

IMPLEMENTING ARTIFICIAL NEURAL NETWORK FOR PREDICTING CAPILLARY PRESSURE IN RESERVOIR ROCKS
Special Topics & Reviews in Porous Media: An International Journal, Vol.4, 2013, issue 4
Farshid Torabi, Ali Abedini
Water Alternating Gas Injection: Laboratory Measurement and Comparison with Analytical Calculation
Journal of Porous Media, Vol.2, 1999, issue 2
E. J. Bonet, C. Cunha, A. C. Correa
Numerical Modeling of the Gas-Oil Gravity Drainage Process in Stratified and Fractured Porous Media
Journal of Porous Media, Vol.11, 2008, issue 5
M. M. Zerafat, Moein Nabipour, Shahab Ayatollahi
COMPARISON OF RESIDUAL OIL SATURATION FOR WATER AND SUPERCRITICAL CO2 FLOODING IN A LONG CORE, WITH LIVE OIL AT RESERVOIR CONDITIONS
Journal of Porous Media, Vol.14, 2011, issue 8
D. J. Schiozer, E. J. Bonet, R. G. Santos, R. Z. Moreno, C. Okabe, S. Iatchuk, O. V. Trevisan
THERMAL PERTURBATION PRODUCED BY A CYLINDRICAL ARC PLASMA AT ATMOSPHERIC PRESSURE
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.10, 2006, issue 2
Michel Pennaneac'h, Charles de Izarra, Herve Rabat