Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Journal of Porous Media
Импакт фактор: 1.49 5-летний Импакт фактор: 1.159 SJR: 0.504 SNIP: 0.671 CiteScore™: 1.58

ISSN Печать: 1091-028X
ISSN Онлайн: 1934-0508

Выпуски:
Том 22, 2019 Том 21, 2018 Том 20, 2017 Том 19, 2016 Том 18, 2015 Том 17, 2014 Том 16, 2013 Том 15, 2012 Том 14, 2011 Том 13, 2010 Том 12, 2009 Том 11, 2008 Том 10, 2007 Том 9, 2006 Том 8, 2005 Том 7, 2004 Том 6, 2003 Том 5, 2002 Том 4, 2001 Том 3, 2000 Том 2, 1999 Том 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v15.i7.10
pages 607-615

A NUMERICAL STUDY OF THE DESALINATION SOIL BY DRY DRAINAGE PROCESS

M. Adala
LETTM, The High Institute of Sciences and Technology of Hammam, Sousse, 4011, Tunisia; Département Génie Civil, Ecole Normale Supérieure de Cachan (ENS Cachan), 61 Avenue du Président Wilson, 94235 Cachan Cedex, France
Rachid Bennacer
L2MGC F-95000, University of Cergy-Pontoise, 95031 Cergy-Pontoise Cedex, Paris, France; ENS-Cachan Dpt GC/LMT/CNRS UMR 8535, 61 Ave. du Président Wilson, 94235 Cachan Cedex, France; Tianjin Key Lab of Refrigeration Technology, Tianjin University of Commerce, 300134
Habib Sammouda
LabEM, LR11ES34, Sousse University,Tunisa, ESSTHS, rue LamineAbbassi, 4011-H.Sousse-Tunisia

Краткое описание

The excessive increase of salt in soil is considered as a major contemporary threat. Among the significant causes of this phenomenon are evaporated and/or transpired irrigation water, which contribute directly to the accumulation of salt ions in the soil. To tackle this salient problem many methods have been advocated. The first tends to eliminate salts by combining the leaching requirement method together with artificial drainage. However, it has proven to be inadequate. The second, a recent and novel one, aims at capturing and removing salt from the soil surface. This process is referred at as the dry drainage method. This work is a numerical simulation of the simultaneous water solute and heat transfer in an unsaturated porous medium during the simultaneous evaporation and drainage of saline dry land soils. A detailed mathematical model is formulated to describe the non-isothermal transport of water in unsaturated porous media. The model consists of the coupled conservative equations of mass, liquid phase, gas phase, water vapor, species, and energy. The water transport mechanisms dealt with are the liquid-phase advection and diffusion of vapor in the gas phase. The numerical results show the remarkable variation profiles of water evaporation and the distribution of soil solution and solute during desalination by dry drainage relative to previous models. In fact, the use of the stick system favors the evaporation intensity and the solute accumulates far from the soil surface layer.


Articles with similar content:

Effects of evaporating droplets on scalar dissipation rate in supersonic shear flows
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
Bing Wang, Z. X. Ren, H. Q. Zhang
Modeling the Loading Stage Coalescence Process in Fibrous Media
Journal of Porous Media, Vol.8, 2005, issue 3
G. G. Chase, G. Vasudevan, S. I. Hariharan
MODELING OF JUMPING-DROPLET CONDENSATION WITH DYNAMIC DROPLET GROWTH
International Heat Transfer Conference 16, Vol.14, 2018, issue
Lenan Zhang, Evelyn N. Wang, Kyle L. Wilke, Zhenyuan Xu
On an Unconventional Mathematical Model of Geoinformatics
Journal of Automation and Information Sciences, Vol.42, 2010, issue 10
Vasiliy V. Skopetsky, Vladimir M. Bulavatskiy
NITRATE TRANSPORT CHARACTERISTICS IN THE GROUNDWATER WITH PREFERENTIAL FLOW
Second Thermal and Fluids Engineering Conference, Vol.32, 2017, issue
Jianfeng Lu, Weilong Wang, Jinqiao Wu, Jing Ding