Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Journal of Porous Media
Импакт фактор: 1.49 5-летний Импакт фактор: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Печать: 1091-028X
ISSN Онлайн: 1934-0508

Том 23, 2020 Том 22, 2019 Том 21, 2018 Том 20, 2017 Том 19, 2016 Том 18, 2015 Том 17, 2014 Том 16, 2013 Том 15, 2012 Том 14, 2011 Том 13, 2010 Том 12, 2009 Том 11, 2008 Том 10, 2007 Том 9, 2006 Том 8, 2005 Том 7, 2004 Том 6, 2003 Том 5, 2002 Том 4, 2001 Том 3, 2000 Том 2, 1999 Том 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.2019027751
pages 1439-1448


Antonio Ferreira Miguel
Department of Physics, School of Sciences and Technology, University of Evora, Institute of Earth Sciences (ICT) Pole of Evora, Portugal

Краткое описание

Perforated plates are important in many applications because of their properties for fluid and thermal management. In this paper, we address fundamental questions about how the geometry of the holes and the void fraction of plates affect fluid flow. Fluid flows in three-dimensional perforated plates are solved numerically over a wide range of porosity (0.15 ≤ ε ≤ 0.90) and Reynolds number (10−1 ≤ Re ≤ 104). The complete set of Navier-Stokes equations is numerically solved for both viscous and nonviscous flow regimes. According to this analysis, equations to calculate loss factor are presented. These equations accurately predict the relation between pressure drop and the fluid flow. In addition, a close examination of results obtained shows that perforated panels with noncircular holes are likely to be more efficient for transporting fluid than panels with circular holes. Apart from the focus on the shape effects, the onset of nonlinear flows is also analyzed. These results provide vital information for the efficient design of perforated panels.


  1. Alizadeh, H. and Piri, M., Three-Phase Flow in Porous Media: A Review of Experimental Studies on Relative Permeability, Rev. Geophys, vol. 52, pp. 468-521,2014.

  2. Allori, D., Mitigation of Cross Wind Effects on Road Vehicles by Porous Screens, PhD, University of Florence and TU Braunschweig, 2012.

  3. Allori, D., Bartoli, G., and Miguel, A.F., Fluid Flow through Macro-Porous Materials: Friction Coefficient and Wind Tunnel Similitude Criteria, Int. J. Fluid Mech. Res, vol. 39, pp. 136-148,2012.

  4. Bejan, A., Dincer, I., Lorente, S., Miguel, A.F., and Reis, A.H., Porous and Complex Flow Structures in Modern Technologies, New York: Springer, 2004.

  5. Carman, O.C., Flow of Gases through Porous Media, London: Butterworths, 1956.

  6. Despois, J.F. and Mortensen, A., Permeability of Open-Pore Microcellular Materials, Acta Mater., vol. 53, pp. 1381-1388,2005.

  7. Firdaouss, M. and Duplessis, J.P., On the Prediction of Darcy Permeability in Nonisotropic Periodic Two-Dimensional Porous Media, J. Porous Media, vol. 7, pp. 119-132, 2004.

  8. Gascoin, N., Fau, G., Gillard, P., Kuhn, M., Bouchez, M., and Steelant, J., Comparison of Two Permeation Test Benches and of Two Determination Methods for Darcy's and Forchheimer's Permeabilities, J. Porous Media, vol. 15, pp. 705-720,2012.

  9. Hooman, K. and Dukhan, N., A Theoretical Model with Experimental Verification to Predict Hydrodynamics of Foams, Transp. Porous Media, vol. 100, pp. 393-406,2013.

  10. Koponen, A., Kandhai, D., Hellen, E., Alava, M.J., Hoekstra, A., Kataja, M., Niskanen, K., Sloot, P., andTimonen, J., Permeability of Three-Dimensional Random Fiber Webs, Phys. Rev. Lett, vol. 80, pp. 716-719, 1998.

  11. Kozeny, J., Ueber Kapillare Leitung des Wassers im Boden, Sitzungsber Akad. Wiss., vol. 136, pp. 271-306, 1927.

  12. Lorenzini, G., Helbig, D., Real, M.V., dos Santos, E.D., Isoldi, L.A., and Rocha, L.A.O., Computational Modeling and Constructal Design Method Applied to the Mechanical Behavior Improvement of Thin Perforated Steel Plates Subject to Buckling, J. Eng. Thermophys, vol. 25, pp. 197-215, 2016.

  13. Madani, B., Topin, F., Rigollet, F., and Tadrist, L., Flow Laws in Metallic Foams: Experimental Determination of Inertial and Viscous Contributions, J. Porous Media, vol. 10, pp. 51-70, 2007.

  14. Miguel, A.F., Airflow through Porous Screens: From Theory to Practical Considerations, Energy Buildings, vol. 28, pp. 63-69, 1998.

  15. Miguel, A.F., Fluid Flow in Tree-Shaped Constructal Networks: Porosity, Permeability and Inertial Parameter, Defect Diffus. Forum, vol. 297-301, pp. 408-412, 2010.

  16. Miguel, A.F., Non-Darcy Porous Media Flow in No-Slip and Slip Regimes, Therm. Sci., vol. 16, pp. 167-176, 2012.

  17. Miguel, A.F., Braak, N.J., and Bot, G.P.A., Analysis of Airflow Characteristics of Greenhouse Screens, J. Agric. Eng. Res., vol. 67, pp. 105-112, 1997.

  18. Miguel, A.F. and Serrenho, A., On the Experimental Evaluation of the Permeability in Porous Media Using a Gas Flow Method, J Phys. D, vol. 40, pp. 6824-6828, 2007.

  19. Miyamoto, Y., Kaysser, W., Rabin, B., Kawasaki, A., and Ford, R., Functionally Graded Materials: Design, Processing and Applications, New York: Springer Science & Business Media, 2013.

  20. Mohammadi, B. and Pironneau, O., Analysis of the k-Epsilon Turbulence Model, Paris: Wiley, 1994.

  21. Nield, D.A. and Bejan, A., Convection in Porous Media, New York: Springer, 2013.

  22. Nordlund, M., Lopez Penha, D.J., Stolz, S., Kuczaj, A., Winkelmann, C., and Geurts, B.J., A New Analytical Model for the Permeability of Anisotropic Structured Porous Media, Int. J. Eng. Sci, vol. 68, pp. 38-60, 2013.

  23. Papathanasiou, T.D., The Hydraulic Permeability of Periodic Arrays of Cylinders of Varying Size, J. Porous Media, vol. 4, pp. 323-337, 2001.

  24. Tamayol, A. and Bahrami, M., Analytical Determination of Viscous Permeability of Fibrous Porous Media, Int. J. Heat Mass Transf., vol. 52, pp. 2407-2414, 2009.

  25. Tamayol, A. and Bahrami, M., Transverse Permeability of Fibrous Porous Media, Phys. Rev. E, vol. 83, p. 046314, 2011.

  26. Vafai, K., Handbook of Porous Media, Boca Raton, FL: CRC Press, 2015.

  27. Vafai, K. and Tien, C.L., Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media, Int. J. Heat Mass Transf., vol. 24, pp. 195-203, 1981.

  28. Wang, J., Song, H., Zhu, W., He, J., and Killough, J., A Fractal-Based Model for Relative Permeability in Nanoscale Pores with Interfacial Effects, Spec. Topics Rev. Porous Media: Int. J, vol. 7, pp. 335-343, 2016.

  29. Ward, J.C., Turbulent Flow in Porous Media, ASCEJ. Hydraul. Div., vol. 90, pp. 1-12, 1964.

  30. Yang, X., Lu, T.J., and Kim, T., An Analytical Model for Permeability of Isotropic Porous Media, Phys. Lett. A, vol. 378, pp. 2308-2311,2014.