Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Journal of Porous Media
Импакт фактор: 1.49 5-летний Импакт фактор: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Печать: 1091-028X
ISSN Онлайн: 1934-0508

Выпуски:
Том 22, 2019 Том 21, 2018 Том 20, 2017 Том 19, 2016 Том 18, 2015 Том 17, 2014 Том 16, 2013 Том 15, 2012 Том 14, 2011 Том 13, 2010 Том 12, 2009 Том 11, 2008 Том 10, 2007 Том 9, 2006 Том 8, 2005 Том 7, 2004 Том 6, 2003 Том 5, 2002 Том 4, 2001 Том 3, 2000 Том 2, 1999 Том 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.2019029040
pages 387-394

SIMPLE FORMULAS FOR POROSITY AND SPECIFIC SURFACE OF THE CHERRY-PIT MODEL

D. Stoyan
Institute of Stochastics, TU Bergakademie Freiberg, D-09596 Freiberg, Germany
H. Hermann
Institute for Solid State and Materials Research, IFW Dresden, P.O. Box 270116, D-01171 Dresden, Germany
Antje Elsner
Sächsische Landesbibliothek – Staats- und Universitätsbibliothek Dresden (SLUB), D-01054 Dresden, Germany

Краткое описание

The cherry-pit or penetrable concentric-shell model is an important, very successful stochastic model for random porous media with open pores. It is based on a random system of hard spheres (the "pits"), which are dilated in order to get open pores. The exact determination of porosity φ and specific surface s is a problem obviously too difficult for contemporary mathematics. In the 1980s approximations were found which are presented in the book by Torquato (Random Heterogeneous Materials: Microstructure and Macroscopic Properties, New York: Springer-Verlag, 2002). Since 2009 these formulas have been refined by the authors through a combination of simulation and ideas of stochastic geometry. This includes the study of the polydispersed case of pits with random radii, which was mastered by means of correction factors. In the present paper the true nature of these factors is explained, which leads to simple and elegant formulas in which only the first three moments of the radius distribution appear.

ЛИТЕРАТУРА

  1. Bargiel, M. and Moscinski, J., C-Language Program for the Irregular Close Packing of Hard Spheres, Computer Phys. Comm., vol. 64, pp. 183–192, 1991.

  2. Bezrukov, A., Bargiel, M., and Stoyan, D., Statistical Analysis of Simulated Random Packings of Spheres, Part. Part. Syst. Char., vol. 19, pp. 111–118, 2002.

  3. Chiew, Y.C. and Glandt, E.D., Interfacial Surface Area in Dispersions and Porous Media, J. Colloid Interface Sci., vol. 99, pp. 86–96, 1984.

  4. Chiu, S.N., Stoyan, D., Kendall, W.S., and Mecke, J., Stochastic Geometry and its Applications, 3rd ed., Chichester: Wiley & Sons, 2013.

  5. Devasena, M. and Indumathi, M.N., Distribution of Elemental Mercury in Saturated Porous Media, J. Porous Media, vol. 18, pp. 1221–1229, 2015.

  6. Elsner, A.,Wagner, A., Aste, T., Hermann, H., and Stoyan, D., Specific Surface Area and Volume Fraction of the Cherry-Pit Model with Packed Pits, J. Phys. Chem. B, vol. 113, pp. 7780–7784, 2009.

  7. Goetze, P., Mendes, M.A.A., Asad, A., Jorschick, H.,Werzner, E.,Wulf, R., Trimis, D., Gross, U., and Ray, S., Sensitivity Analysis of Effective Thermal Conductivity of Open-Cell Ceramic Foams using a Simplified Model based on Detailed Structure, Spec. Top. Rev. Porous Media, vol. 6, pp. 1–10, 2015.

  8. Gotoh, K., Nakagawa, M., Furuuchi, M., and Yoshigi, A., Pore Size Distributions in Random Assemblies of Equal Spheres, J. Chem. Phys., vol. 85, pp. 3078–3080, 1986.

  9. Hassanizadeh, S.M., Advanced Theories of Two-Phase Flow in Porous Media, in Handbook of Porous Media, K. Vafai, Ed., Boca Raton: CRC Press, pp. 47–59, 2015.

  10. Hermann, H., Elsner, A., and Stoyan, D., Surface Area and Volume Fraction of Random Open-Pore Systems, Modell. Simul. Mater. Sci. Eng., vol. 21, no. 8, Article ID 085005, 2013.

  11. Hermann, H. and Elsner, A., Geometric Models for Isotropic Random Porous Media: A Review, Adv. Mater. Sci. Eng., vol. 2014, Article ID 562874, 2014.

  12. Jodrey, W.S. and Tory, E.M., Computer Simulation of Close Random Packing of Equal Spheres, Phys. Rev. A, vol. 32, pp. 2347– 2351, 1985.

  13. Kansal, A.R., Torquato, S., and Stillinger, F.H., Computer Generation of Dense Polydisperse Sphere Packings, J. Chem. Phys., vol. 117, pp. 8212–8218, 2002.

  14. Kumar, P. and Topin, F., Impact of Anisotropy on Geometrical and Thermal Conductivity of Metallic Foam Structures, J. Porous Media, vol. 18, pp. 949–970, 2015.

  15. Kumar, P., Topin, F., and Tadrist, L., Geometrical Characterization of Kelvin-Like Metal Foams for Different Strut Shapes and Porosity, J. Porous Media, vol. 18, pp. 637–652, 2015.

  16. Lee, S.B. and Torquato, S., Porosity for the Penetrable-Concentric-Shell Model of Two-Phase Disordered Media: Computer Simulation Results, J. Chem. Phys., vol. 89, pp. 3258–3263, 1988.

  17. Panda, M.N. and Lake, L.W., Estimation of Single-Phase Permeability from Parameters of Particle-Size Distribution, AAPG Bull., vol. 78, no. 7, pp. 1028–1039, 1994.

  18. Rikvold, P.A. and Stell, G., Porosity and Specific Surface for Interpenetrable-Sphere Models of Random Two-Phase Media, J. Chem. Phys., vol. 82, no. 2, pp. 1014–1020, 1985.

  19. Sahimi, M., Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches,Weinheim: Wiley-VCH, 1995.

  20. Stoyan, D., Random Sets: Models and Statistics, Int. Stat. Rev., vol. 66, pp. 1–27, 1998.

  21. Stoyan, D., Wagner, A., Hermann, H., and Elsner, A., Statistical Characterization of the Pore Space of Random Systems of Hard Spheres, J. Non-Cryst. Solids, vol. 357, pp. 1508–1515, 2011.

  22. Torquato, S., Bulk Properties of Two-Phase Disordered Media – I. Cluster Expansion for the Effective Dielectric Constant of Dispersions of Penetrable Spheres, J. Chem. Phys., vol. 81, pp. 5079–5088, 1984.

  23. Torquato, S., Random Heterogeneous Materials: Microstructure and Macroscopic Properties, New York: Springer-Verlag, 2002.

  24. Torquato, S. and Stell, G., Microstructure of Two-Phase Random Media. IV. Expected Surface Area of a Dispersion of Penetrable Spheres and its Characteristic Function, J. Chem. Phys., vol. 80, pp. 878–880, 1984.

  25. Vafai, K., Ed., Handbook of Porous Media, 3rd ed., Boca Raton: CRC Press, 2015.


Articles with similar content:

ON THE BRINKMAN EQUATION AND THE CONCEPT OF VISCOUS DISSIPATION IN POROUS MEDIA
Special Topics & Reviews in Porous Media: An International Journal, Vol.2, 2011, issue 2
Amgad Salama
ACCURACY OF LINEAR WIND SPEED DETERMINATION BY MEANS OF A SINGLE-POSITIONED DOPPLER WEATHER ALL-ROUND-LOOKING RADAR
Telecommunications and Radio Engineering, Vol.69, 2010, issue 8
Nikolai Ivanovich Kravchenko
Colorectal Cancer in Crohn's Disease—Review of a 56-Year Experience in Karolinska Institute University Hospital
Journal of Environmental Pathology, Toxicology and Oncology, Vol.27, 2008, issue 4
Carlos Rubio, Ragnar Befrits
Suicide Among Women with Cosmetic Breast Implants: A Review of the Epidemiologic Evidence
Journal of Long-Term Effects of Medical Implants, Vol.13, 2003, issue 6
Loren Lipworth, Robert E. Tarone, Joseph K. McLaughlin
The paper presents results of measuring radar cross section (RCS) vs frequency dependences for wire-grid, lamellar and bulk models of small-size radar targets at decameter wavelengths in the case of ground-wave sounding. It has been shown that the RCS may
Telecommunications and Radio Engineering, Vol.51, 1997, issue 4
V. I. Lutsenko, Stanislav I. Khomenko