Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Journal of Porous Media
Импакт фактор: 1.752 5-летний Импакт фактор: 1.487 SJR: 0.43 SNIP: 0.762 CiteScore™: 2.3

ISSN Печать: 1091-028X
ISSN Онлайн: 1934-0508

Выпуски:
Том 23, 2020 Том 22, 2019 Том 21, 2018 Том 20, 2017 Том 19, 2016 Том 18, 2015 Том 17, 2014 Том 16, 2013 Том 15, 2012 Том 14, 2011 Том 13, 2010 Том 12, 2009 Том 11, 2008 Том 10, 2007 Том 9, 2006 Том 8, 2005 Том 7, 2004 Том 6, 2003 Том 5, 2002 Том 4, 2001 Том 3, 2000 Том 2, 1999 Том 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.2020029819
pages 573-591

USING A POROUS MEDIUM MODEL TO SIMULATE THE AIR FLOW THROUGH FOG WATER COLLECTORS

Daniel Montoya
Department of Mechanical and Metallurgical Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago de Chile
Wolfram Jahn
Department of Mechanical and Metallurgical Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago de Chile
Juan de Dios Rivera
Department of Mechanical and Metallurgical Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago de Chile

Краткое описание

Harvesting water from coastal fog is a promising alternative for regions of water scarcity. The fog water collector (FWC) is a mesh screen usually installed perpendicular to the main wind direction, intercepting the air flow and extracting some of the water droplets contained in it. In order to maximize the water output, many FWC have to be located in an optimized manner. For optimizing the layout, computational simulations that consume significant computational resources are necessary. The aim of the present study is to develop a computationally cheap methodology of simulating flow through FWCs. For this, a porous medium model was validated in order to adequately represent the aerodynamics of FWC at open flow conditions. Computational simulations of air flow were carried out through a mesh screen and through a porous medium at confined flow. The pressure drop coefficients of both simulations at confined flow were compared to experimental data, yielding differences of 2.8% for the mesh screen simulation and 7.2% for the porous medium simulation. The results were then extrapolated to air flow through a mesh screen at open flow conditions. It was shown that outside the wake the difference between full simulations and the porous medium approach does not exceed 5%, while the mass flow rate error within the wake is close to 9%. This indicates that the model of a porous medium is a valid methodology to simulate flow through a FWC for both confined and open flow conditions at a significantly smaller computational cost.

Ключевые слова: fog water collector, CFD, porous medium, fog harvesting

ЛИТЕРАТУРА

  1. Bejan, A., Advanced Engineering Thermodynamics, Hoboken, NJ: John Wiley & Sons, Inc., 2016.

  2. Bruijnzeel, L.S., Eugster, W., and Burkard, R., Fog as a Hydrologic Input, in Encyclopedia of Hydrological Sciences, Hoboken, NJ: John Wiley & Sons, pp. 559-582, 2005.

  3. Cereceda, P., Hernandez, P., Leiva, J., and Rivera, J.D.D., Agua de Niebla, Nuevas Tecnologias para el Desarrollo Sustentable de Zonas Aridas y Semiaridas., Tech. Rep., CORFO, Coquimbo, 2014.

  4. Cereceda, P., Larrain, H., Osses, P., Farias, M., and Egana, I., The Spatial and Temporal Variability of Fog and Its Relation to Fog Oases in the Atacama Desert, Chile, Atmos. Res., vol. 87, no. 3, pp. 312-323, 2008.

  5. de la Jara, E., Modelacion Computacional del Impacto de Gotas de Niebla en Fibras Cilindricas Paralelas, Master's, Pontificia Universidad Catolica de Chile, 2012.

  6. del Rio, C., Osses, P., Wolf, N., Garcia, J., and Siegmund, A., Long-Term Spatiotemporal Variability of Stratocumulus (Sc) Cloud Cover and Its Relation with Fog Water Yields in the Coastal Atacama Desert, Chile, Septima Conferencia Internacional de Niebla, Captacion de niebla y Rocio, 2016.

  7. Domen, J.K., Stringfellow, W.T., Camarillo, M.K., and Gulati, S., Fog Water as an Alternative and Sustainable Water Resource, Clean Technol. Environ. Policy, vol. 16, no. 2, pp. 235-249, 2014.

  8. Echevarria, F., Aerodynamic and Geometric Characterizations for Fog Collecting Meshes, Master's, Pontificia Universidad Catolica de Chile, 2015.

  9. European Community Directorate General XII, Fog as a New Water Resource for the Sustainable Development of the Ecosystem of the Peruvian and Chilean Coastal Desert, 1995.

  10. Fernandez, D.M., Torregrosa, A., Weiss-Penzias, P.S., Zhang, B.J., Sorensen, D., Cohen, R.E., McKinley, G.H., Kleingartner, J., Oliphant, A., and Bowman, M., Fog Water Collection Effectiveness: Mesh Intercomparisons, Aerosol Air Quality Res., vol. 18, no. 1, pp. 270-283, 2018.

  11. Gischler, C., The Missing Link in a Production Chain: Vertical Obstacles to Catch Camanchaca, Tech. Rep. B001NTUTCG, UNESCO, 1991.

  12. Holmes, R., Rivera, J.d.D., and de la Jara, E., Large Fog Collectors: New Strategies for Collection Efficiency and Structural Response to Wind Pressure, Atmos. Res., vol. 151, pp. 236-249, 2015.

  13. Israel, R. and Rosner, D.E., Use of a Generalized Stokes Number to Determine the Aerodynamic Capture Efficiency of Non-Stokesian Particles from a Compressible Gas Flow, Aerosol Sci. Technol., vol. 2, no. 1, pp. 45-51, 1982.

  14. Klemm, O., Schemenauer, R.S., Lummerich, A., Cereceda, P., Marzol, V., Corell, D., Van Heerden, J., Reinhard, D., Gherezghiher, T., Olivier, J., Osses, P., Sarsour, J., Frost, E., Estrela, M.J., Valiente, J.A., and Fessehaye, G.M., Fog as a Fresh-Water Resource: Overview and Perspectives, AMBIO, vol. 41, pp. 221-234, 2012.

  15. Kundu, P.K., Cohen, I.M., and Dowling, D.R., Fluid Mechanics, Cambridge: Academic Press, 2012.

  16. Launder, B. and Spalding, D., The Numerical Computation of Turbulent Flows, Comput. Methods Appl. Mech. Eng., vol. 3, no. 2, pp. 269-289, 1974.

  17. LeBoeuf, R. and de la Jara, E., Quantitative Goals for Large-Scale Fog Collection Projects as a Sustainable Freshwater Resource in Northern Chile, Water Int., vol. 39, no. 4, pp. 431-450, 2014.

  18. Marzol, M.V., Temporal Characteristics and Fog Water Collection during Summer in Tenerife (Canary Islands, Spain), Atmos. Res., vol. 87, no. 3, pp. 352-361, 2008.

  19. Mekonnen, M.M. and Hoekstra, A.Y., Sustainability: Four Billion People Facing SevereWater Scarcity, Sci. Adv., vol. 2, no. 2, pp. 2-7, 2016.

  20. Middelstadt, F. and Gerstmann, J., Numerical Investigations on Fluid Flow through Metal Screens, 5th European Conf. for Aeronautics and Space Sci. (EUCASS), Munich, Germany, EDP Science, pp. 1-15, 2013.

  21. Miguel, A.F., Van De Braak, N.J., and Bot, G.P.A., Analysis of the Airflow Characteristics of Greenhouse Screening Materials, J. Agric. Eng. Res., vol. 67, pp. 105-112, 1997.

  22. Nield, D.A. and Bejan, A., Convection in Porous Media, New York: Springer, 2013.

  23. Nocedal, J. and Wright, S., Numerical Optimization, New York: Springer, 2006.

  24. OpenCFD, L., OpenFOAM, accessed from https://www.openfoam.com/, 2004.

  25. Organization, W.H., Escasez de Agua, accessed from https://www.who.int/features/factfiles/water/water facts/es/, 2018.

  26. Osses, P., del Rio, C., Garcia, J., Zanetta, N., Rivera, D., and Wolf, N., Variability of Fog as a FreshWater Resource and Its Relation with Regional and Local Oceanic-Atmospheric-Geographic Indicators, Atacama Desert Alto Patache Fog Oasis, Chile, Septima Conferencia Internacional de Niebla, Captacion de niebla y Rocio, 2016.

  27. Park, K.C., Chhatre, S.S., Srinivasan, S., Cohen, R.E., and McKinley, G.H., Optimal Design of Permeable Fiber Network Structures for Fog Harvesting, Langmuir, vol. 29, no. 43, pp. 13269-13277, 2013.

  28. Rajaram, M., Heng, X., Oza, M., and Luo, C., Enhancement of Fog-Collection Efficiency of a Raschel Mesh Using Surface Coatings and Local Geometric Changes, Colloids Surf. A, vol. 508, pp. 218-229, 2016.

  29. Rivera, J.d.D., Aerodynamic Collection Efficiency of Fog Water Collectors, Atmos. Res., vol. 102, no. 3, pp. 335-342, 2011.

  30. Samorani, M., The Wind Farm Layout Optimization Problem, Handbook of Wind Power Systems, New York: Springer, pp. 21-38, 2013.

  31. Schemenauer, R.S., Cereceda, P., and Carvajal, N., Measurements of Fog Water Deposition and Their Relationships to Terrain Features, J. Appl. Meteorolog. Climat., vol. 1987, pp. 1285-1291, 1987.

  32. Schemenauer, R.S., Cereceda, P., and Osses, P., The Complementary Aspects of Projects to Collect Rain, Fog and Dew, XI IRCSA Conf., Mexico DF, Mexico, accessed from http://www.eng.warwick.ac.uk/ircsa/pdf/11th/Schemenauer.pdf, 2003.

  33. Schemenauer, R.S. and Joe, P.I., The Collection Efficiency of a Massive Fog Collector, Atmos. Res., vol. 24, nos. 1-4, pp. 53-69, 1989.

  34. Spalart, P. and Allmaras, S., A One-Equation Turbulence Model for Aerodynamic Flows, 30th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reston, VA, 1992.

  35. Teitel, M., Using Computational Fluid Dynamics Simulations to Determine Pressure Drops on Woven Screens, Biosystems Engineering, vol. 105, no. 2, pp. 172-179, 2010.

  36. Valera, D.L., Molina, F.D., Alvarez, A.J., Lopez, J.A., Terres-Nicoli, J.M., and Madueno, A., Contribution to Characterisation of Insect-Proof Screens: Experimental Measurements in Wind Tunnel and CFD Simulation, Acta Horticulturae, vol. 691, no. 691, pp. 441-448, 2005.

  37. Valera, D.L., Alvarez, A.J., and Molina, F.D., Aerodynamic Analysis of Several Insect-Proof Screens Used in Greenhouses, Span. J. Agri. Res., vol. 4, no. 4, pp. 273-279, 2006.

  38. Versteeg, H.K.H.K. and Malalasekera, W.W., An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Pearson Education Ltd., 2007.

  39. Wessel, R.A. and Righi, J., Generalized Correlations for Inertial Impaction of Particles on a Circular Cylinder, Aerosol Sci. Technol., vol. 9, no. 1, pp. 29-60, 1988.

  40. White, F.M., Fluid Mechanics, 7th ed., New York: McGraw Hill, 2011.


Articles with similar content:

COMPUTATIONAL FLUID DYNAMICS METHOD FOR THE ANALYSIS OF HYDRODYNAMICS PERFORMANCE OF MANGROVE ROOT MODELS
International Journal of Fluid Mechanics Research, Vol.46, 2019, issue 6
Robert Stegmaier, Jeanne Frisk
NUMERICAL ANALYSIS OF THE FLUID-DYNAMIC BEHAVIOR OF A SUBMERGED PLATE WAVE ENERGY CONVERTER
Computational Thermal Sciences: An International Journal, Vol.6, 2014, issue 6
Luiz Alberto O. Rocha, L. A. Isoldi, E. D. dos Santos, E. C. Couto, F. M. Seibt, Paulo Teixeira
EFFECT OF LOCATIONS OF THE SUPPLY VENT ON THE EFFICIENCY INDEX OF A CONTAINER DATACENTER
Second Thermal and Fluids Engineering Conference, Vol.1, 2017, issue
Chi-Chuan Wang, Cheng-Hao Wang, Yeng-Yung Tsui
DEVELOPMENT METHODOLOGY OF MODELING FREE PISTON ENGINE AND ITS COMPONENTS
International Heat Transfer Conference 13, Vol.0, 2006, issue
Mounir Ibrahim, Z. Zhang
PARAMETRIC STUDIES ON ETC TYPE SOLAR WATER HEATER- THREE DIMENSIONAL NUMERICAL MODELING AND ANALYSIS
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
M. Srinivas , S. Jayaraj , Arun K. Raj