Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Journal of Porous Media
Импакт фактор: 1.752 5-летний Импакт фактор: 1.487 SJR: 0.43 SNIP: 0.762 CiteScore™: 2.3

ISSN Печать: 1091-028X
ISSN Онлайн: 1934-0508

Том 23, 2020 Том 22, 2019 Том 21, 2018 Том 20, 2017 Том 19, 2016 Том 18, 2015 Том 17, 2014 Том 16, 2013 Том 15, 2012 Том 14, 2011 Том 13, 2010 Том 12, 2009 Том 11, 2008 Том 10, 2007 Том 9, 2006 Том 8, 2005 Том 7, 2004 Том 6, 2003 Том 5, 2002 Том 4, 2001 Том 3, 2000 Том 2, 1999 Том 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v1.i1.30
pages 31-46

Heat Transfer at the Boundary Between a Porous Medium and a Homogeneous Fluid: The One-Equation Model

J Alberto Ochoa-Tapia
Departamento de I.P.H., Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340, Mexico, D.F., Mexico
Stephen Whitaker
Department of Chemical Engineering and Material Science, University of California, Davis, California, USA

Краткое описание

The heat transfer condition at the boundary between a porous medium (the ω region) and a homogeneous fluid {the η region) is developed as a flux jump condition based on the "nonlocal form" of the volume-averaged thermal energy equation that is valid within the "boundary region." Away from the boundary region, we impose the condition of "local thermal equilibrium" so that the nonlocal form simplifies to the classic one-equation model for thermal energy transport. The derived jump condition for the energy flux contains terms representing the accumulation, conduction, and convection of "excess surface thermal energy," in addition to an "excess nonequilibrium thermal source" that results from the potential failure of local thermal equilibrium in the boundary region. When the transport of excess surface thermal energy is negligible, the analysis indicates that the jump condition reduces to

nωη · Κω* · ∇ (T)ω = nωη · kβ(T)η + Φs, at the ω−η boundary

Because local thermal equilibrium will fail in the boundary region before it fails in the homogeneous region of the porous medium, the nonequilibrium thermal source, Φs represents an important term in the transition from a one-equation model to a two-equation model.

Articles with similar content:

Mass Transfer Jump Condition at the Boundary between a Porous Medium and a Homogeneous Fluid
Journal of Porous Media, Vol.6, 2003, issue 1
J. J. Valencia-Lopez, Gilberto Espinosa-Paredes, J Alberto Ochoa-Tapia
Effect of Viscous Dissipation on the Darcy Forced-Convection Flow Past a Plane Surface
Journal of Porous Media, Vol.6, 2003, issue 2
Ioan Pop, B. Keller, E. Magyari
A Deviation from Darcy's Law due to Unsaturated Flow in Dual-Scale Porous Media
Journal of Porous Media, Vol.12, 2009, issue 4
Krishna Pillai, Murthy S. Munagavalasa
International Heat Transfer Conference 8, Vol.3, 1986, issue
James Sucec
International Heat Transfer Conference 8, Vol.2, 1986, issue
Arvind Atreya