Доступ предоставлен для: Guest

PORE-SCALE STUDY OF RAREFIED GAS FLOW THROUGH FRACTAL AND VORONOI POROUS MEDIA

Том 23, Выпуск 11, 2020, pp. 1065-1079
DOI: 10.1615/JPorMedia.2020034638
Get accessGet access

Краткое описание

Investigation of rarefied gas flow through unconventional reservoirs has been a challenging task due to the coexistence of slippage and transition flow regimes. Considering the invalidity of traditional continuum flow theory for describing rarefied gas flow, in this work, the discrete velocity method, which is capable of all flow regimes and accurately predicts the nonequilibrium gas dynamics, is employed to investigate the gas flows of CO2, CH4, N2, and H2 through Sierpinski fractals and Voronoi porous media. The effects of porosity, Knudsen number, specific surface area, and pore-throat ratio on gas velocity distribution, streamlines, and apparent permeability are discussed. The results show that the velocity magnitude reduction for CO2 is evidently larger than that for H2, and the apparent permeability for different gases quantitatively follows ka,H2 > ka,N2 > ka,CH4 > ka,CO2. When the Knudsen number and porosity remain unchanged, the apparent permeability is in inverse proportion to the specific surface area for the sake of the increased friction from the larger specific surface area. Even under the same porosity and specific surface area, the apparent permeability reduces as the pore-throat ratio increases and the gas velocity obviously increases near the pore-pore and pore-throat regions, which can be ascribed to the narrow throat as well as the reduction of available pathways. The present work sheds light on the mechanism of rarefied gas transport in microscale porous media and is of significance for predicting the recovery rate of unconventional gases such as tight gas, shale gas, and coalbed methane.

ЛИТЕРАТУРА
  1. Bhatnagar, P.L., Gross, E.P., and Krook, M., A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems, Phys. Rev, vol. 94, no. 3, pp. 511-525, 1954. .

  2. Bird, G.A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford, UK: Clarendon Press, 1994. .

  3. Cercignani, C., Lampis, M., and Lorenzani, S., Plane Poiseuille Flow with Symmetric and Nonsymmetric Gas-Wall Interactions, Transp. Theory Stat. Phys, vol. 33, pp. 545-561,2004. .

  4. Ebrahimi, A. and Roohi, E., DSMC Investigation of Rarefied Gas Flow through Diverging Micro- and Nanochannels, Microfluid. Nanofluid, vol. 21, article ID 18, 2017. .

  5. Germanou, L., Ho, M.T., Zhang, Y.H., and Wu, L., Intrinsic and Apparent Gas Permeability of Heterogeneous and Anisotropic Ultra-Tight Porous Media, J. Nat. Gas Sci. Eng., vol. 60, pp. 271-283, 2018. .

  6. Ho, M.T., Zhu, L.H., Wu, L., Wang, P., Guo, Z.L., Ma, J.S., and Zhang, Y.H., Pore-Scale Simulations of Rarefied Gas Flows in Ultra-Tight Porous Media, Fuel, vol. 249, pp. 341-351,2019a. .

  7. Ho, M.T., Zhu, Li, J., Wu, L., Reese, J.M., and Zhang, Y.H., A Comparative Study of the DSBGK and DVM Methods for Low- Speed Rarefied Gas Flows, Comput. Fluids, vol. 181, pp. 143-159, 2019b. .

  8. Ho, M.T., Zhu, L.H., Wu, L., Wang, P., Guo, Z.L., and Li, Z.H., A Multi-Level Parallel Solver for Rarefied Gas Flows in Porous Media, Comput. Phys. Commun., vol. 234, pp. 14-25, 2019c. .

  9. Javadpour, F., Fisher, D., and Unsworth, M., Nanoscale Gas Flow in Shale Gas Sediments, J. Can. Pet. Technol., vol. 46, no. 10, pp. 55-61,2007. .

  10. Jin, Y., Li, X., Zhao, M.Y., Liu, X.H., and Li, H., A Mathematical Model of Fluid Flow in Tight Porous Media based on Fractal Assumptions, Int. J. Heat Mass Transf., vol. 108, pp. 1078-1088, 2017. .

  11. Kalarakis, A.N., Michalis, V.K., Skouras, E.D., andBurganos, V.N., Mesoscopic Simulation of Rarefied Flow in Narrow Channels and Porous Media, Transp. Porous Media, vol. 94, pp. 385-398, 2012. .

  12. Kawagoe, Y., Oshima, T., Tomarikawa, K., Tokumasu, T., Koido, T., and Yonemura, S., A Study on Pressure-Driven Gas Transport in Porous Media: From Nanoscale to Microscale, Microfluid. Nanofluid, vol. 20, article ID 162,2016. .

  13. Li, C.H., Xu, P., Qiu, S.X., and Zhou, Y., The Gas Effective Permeability of Porous Media with Klinkenberg Effect, J. Nat. Gas Sci. Eng., vol. 34, pp. 534-540, 2016. .

  14. Liu, W., Tang, G.H., and Shi, Y., Apparent Permeability Study of Rarefied Gas Transport Properties through Ultra-Tight Voronoi Porous Media by Discrete Velocity Method, J. Nat. Gas Sci. Eng., vol. 74, article ID 103100, 2020. .

  15. Liu, W., Tang, G.H., Su, W., Wu, L., and Zhang, Y.H., Rarefaction Throttling Effect: Influence of the Bend in Micro-Channel Gaseous Flow, Phys. Fluids, vol. 30, article ID 082002,2018. .

  16. Lu, Y.B., Tang, G.H., Sheng, Q., Gu, X.J., Emerson, D.R., and Zhang, Y.H., Knudsen's Permeability Correction for Gas Flow in Tight Porous Media Using the R26 Moment Method, J. Porous Media, vol. 20, no. 9, pp. 787-805, 2017. .

  17. Maxwell, J.C., On Stresses in Rarefied Gases Arising from Inequalities of Temperature, Philo. Trans. R. Soc. Parti, vol. 170, pp. 231-256, 1897. .

  18. Mosavat, N., Hasanidarabadi, B., and Pourafshary, P., Gaseous Slip Flow Simulation in a Micro/Nano Pore-Throat Structure Using the Lattice Boltzmann Model, J. Petrol. Sci. Eng., vol. 177, pp. 93-103,2019. .

  19. Naris, S., Valougeorgis, D., Kalempa, D., and Sharipov, F., Gaseous Mixture Flow between Two Parallel Plates in the Whole Range of the Gas Rarefaction, Physica A, vol. 336, pp. 294-318,2004. .

  20. Nie, X.B., Doolen, G.D., and Chen, S.Y., Lattice-Boltzmann Simulation of Fluid Flows in MEMS, J. Stat. Phys., vol. 107, no. 112, pp. 279-289, 2002. .

  21. Ohwada, T., Sone, Y., and Aoki, K., Numerical Analysis of the Poiseuille and Thermal Transpiration Flows between Two Parallel Plates on the Basis of the Boltzmann Equation for Hardsphere Molecules, Phys. Fluids, vol. 1, pp. 2042-2049, 1989. .

  22. Prasanth, P.S. and Kakkassery, J.K., Molecular Models for Simulation of Rarefied Gas Flows Using Direct Simulation Monte Carlo Method, FluidDyn. Res, vol. 40, no. 4, pp. 233-252, 2008. .

  23. Qu, Z.G., Yin, Y., Wang, H., and Zhang, J.F., Pore-Scale Investigation on Coupled Diffusion Mechanisms of Free and Adsorbed Gases in Nanoporous Organic Matter, Fuel, vol. 260, article ID 116423, 2020. .

  24. Rostamzadeh, H., Salimi, M.R., and Taeibi-Rahni, M., Permeability Correlation with Porosity and Knudsen Number for Rarefied Gas Flow in Sierpinski Carpets, J. Nat. Gas Sci. Eng., vol. 56, pp. 549-567,2018. .

  25. Sbragaglia, M. and Succi, S., Analytical Calculation of Slip Flow in Lattice Boltzmann Models with Kinetic Boundary Conditions, Phys. Fluids, vol. 17, article ID 093602,2005. .

  26. Sekaran, A., Varghese, P., and Goldstein, D., An Analysis of Numerical Convergence in Discrete Velocity Gas Dynamics for Internal Flows, J. Comput. Phys, vol. 365, pp. 226-242,2018. .

  27. Shariati, V., Ahmadian, M.H., and Roohi, E., Direct Simulation Monte Carlo Investigation of Fluid Characteristics and Gas Transport in Porous Microchannels, Sci. Rep, vol. 9, article ID 17183, 2019. .

  28. Sharipov, F., Data on the Velocity Slip and Temperature Jump on a Gas-Solid Interface, J. Phys. Chem. Ref. Data, vol. 40, no. 2, article ID 023101, 2011. .

  29. Sharipov, F. and Graur, I.A., Rarefied Gas Flow through a Zigzag Channel, Vacuum, vol. 86, pp. 1778-1782, 2012. .

  30. Sreekanth, A.K., Slip Flow through Long Circular Tubes, Int. Proc. of 6th Int. Symp. on Rarefied Gas Dynamics, pp. 667-680, 1969. .

  31. Szalmas, L., Accelerated Discrete Velocity Method for Axial-Symmetric Gaseous Flows, Comput. Phys. Commun., vol. 184, pp. 1432-1438, 2013. .

  32. Tang, G.H., Tao, W.Q., and He, Y.L., Lattice Boltzmann Method for Simulating Gas Flow in Microchannels, Int. J. Mod. Phys. C, vol. 15, pp. 335-347, 2004. .

  33. Tang, G.H., Tao, W.Q., and He, Y.L., Lattice Boltzmann Method for Gaseous Microflows Using Kinetic Theory Boundary Condi-tions, Phys. Fluids, vol. 17, article ID 058101, 2005a. .

  34. Tang, G.H., Tao, W.Q., and He, Y.L., Gas Slippage Effect on Microscale Porous Flow Using the Lattice Boltzmann Method, Phys. Rev. E, vol. 72, article ID 056301,2005b. .

  35. Tang, G.H., Zhang, Y.H., and Emerson, D.R., Lattice Boltzmann Models for Nonequilibrium Gas Flows, Phys. Rev. E, vol. 77, article ID 046701, 2008. .

  36. Verhaeghe, F., Luo, L.S., and Blanpain, B., Lattice Boltzmann Modeling of Microchannel Flow in Slip Flow Regime, J. Comput. Phys, vol. 228, pp. 147-157, 2009. .

  37. Wang, H., Chen, L., Qu, Z.G., Yin, Y., Kang, Q.J., Yu, B., and Tao, W.Q., Modeling of Multi-Scale Transport Phenomena in Shale Gas Production-A Critical Review, Appl. Energy, vol. 262, article ID 114575,2020. .

  38. Wang, P., Ho, M.T., Wu, L., Guo, Z.L., and Zhang, Y.H., A Comparative Study of Discrete Velocity Method for Low-Speed Rarefied Gas Flows, Comput. Fluids, vol. 161, pp. 33-46, 2018. .

  39. Wu, L., Ho, M.T., Germanou, L., Gu, X.J., Liu, C., Xu, K., and Zhang, Y.H., On the Apparent Permeability of Porous Media in Rarefied Gas Flows, J. FluidMech, vol. 822, pp. 398-417,2017. .

  40. Wu, L., Reese, J.M., and Zhang, Y.H., Solving the Boltzmann Equation by the Fast Spectral Method: Application to Microflows, J. FluidMech., vol. 746, pp. 53-84,2014. .

  41. Xiao, F. and Yin, X.L., Geometry Models of Porous Media based on Voronoi Tessellations and Their Porosity-Permeability Relations, Comput. Math. Appl., vol. 72, pp. 328-348, 2016. .

  42. Yang, L.M., Shu, C., Wu, J., and Wang, Y., Comparative Study of Discrete Velocity Method and High-Order Lattice Boltzmann Method for Simulation of Rarefied Flows, Comput. Fluids, vol. 146, pp. 125-142, 2017. .

  43. Yin, Y., Qu, Z.G., Zhang, T., Zhang, J.F., and Wang, Q.Q., Three-Dimensional Pore-Scale Study of Methane Gas Mass Diffusion in Shale with Spatially Heterogeneous and Anisotropic Features, Fuel, vol. 273, article ID 117750, 2020. .

  44. Zeng, Y., Ning, Z.F., Wang, Q., Sun, H.L., Huang, L., and Ye, H.T., Gas Transport in Self-Affine Rough Microchannels of Shale Gas Reservoir, J. Petrol. Sci. Eng., vol. 167, pp. 716-728, 2018. .

  45. Zhang, Y.D., Zhou, C.L., Qu, C., Wei, M.Z., He, X.M., and Bai, B.J., Fabrication and Verification of a Glass-Silicon-Glass Micro-/Nanofluidic Model for Investigating Multi-Phase Flow in Shale-Like Unconventional Dual-Porosity Tight Porous Media, Lab Chip, vol. 19, pp. 4071-4082,2019. .

  46. Zhang, Y.H., Gu, X.J., Barber, R.W., and Emerson, D.R., Capturing Knudsen Layer Phenomena Using a Lattice Boltzmann Model, Phys. Rev. E, vol. 74, article ID 046704, 2006. .

  47. Zheng, J.Y., Zhang, W.B., Zhang, G.Z., Yu, Y.S., and Wang, S.Q., Effect of Porous Structure on Rarefied Gas Flow in Porous Medium Constructed by Fractal Geometry, J. Nat. Gas Sci. Eng., vol. 34, pp. 1446-1452, 2016. .

Статьи, принятые к публикации

Effects of Momentum Slip and Convective Boundary Condition on a Forced Convection in a Channel Filled with Bidisperse Porous Medium (BDPM) Vanengmawia PC, Surender Ontela ON THERMAL CONVECTION IN ROTATING CASSON NANOFLUID PERMEATED WITH SUSPENDED PARTICLES IN A DARCY-BRINKMAN POROUS MEDIUM Pushap Sharma, Deepak Bains, G. C. Rana Effect of Microstructures on Mass Transfer inside a Hierarchically-structured Porous Catalyst Masood Moghaddam, Abbas Abbassi, Jafar Ghazanfarian Insight into the impact of melting heat transfer and MHD on stagnation point flow of tangent hyperbolic fluid over a porous rotating disk Priya Bartwal, Himanshu Upreti, Alok Kumar Pandey Numerical Simulation of 3D Darcy-Forchheimer Hybrid Nanofluid Flow with Heat Source/Sink and Partial Slip Effect across a Spinning Disc Bilal Ali, Sidra Jubair, Md Irfanul Haque Siddiqui Fractal model of solid-liquid two-phase thermal transport characteristics in the rough fracture network shanshan yang, Qiong Sheng, Mingqing Zou, Mengying Wang, Ruike Cui, Shuaiyin Chen, Qian Zheng Application of Artificial Neural Network for Modeling of Motile Microorganism-Enhanced MHD Tangent Hyperbolic Nanofluid across a vertical Slender Stretching Surface Bilal Ali, Shengjun Liu, Hongjuan Liu Estimating the Spreading Rates of Hazardous Materials on Unmodified Cellulose Filter Paper: Implications on Risk Assessment of Transporting Hazardous Materials Heshani Manaweera Wickramage, Pan Lu, Peter Oduor, Jianbang Du ELASTIC INTERACTIONS BETWEEN EQUILIBRIUM PORES/HOLES IN POROUS MEDIA UNDER REMOTE STRESS Kostas Davanas Gravity modulation and its impact on weakly nonlinear bio-thermal convection in a porous layer under rotation: a Ginzburg-Landau model approach Michael Kopp, Vladimir Yanovsky Pore structure and permeability behavior of porous media under in-situ stress and pore pressure: Discrete element method simulation on digital core Jun Yao, Chunqi Wang, Xiaoyu Wang, Zhaoqin Huang, Fugui Liu, Quan Xu, Yongfei Yang Influence of Lorentz forces on forced convection of Nanofluid in a porous lid driven enclosure Yi Man, Mostafa Barzegar Gerdroodbary SUTTERBY NANOFLUID FLOW WITH MICROORGANISMS AROUND A CURVED EXPANDING SURFACE THROUGH A POROUS MEDIUM: THERMAL DIFFUSION AND DIFFUSION THERMO IMPACTS galal Moatimid, Mona Mohamed, Khaled Elagamy CHARACTERISTICS OF FLOW REGIMES IN SPIRAL PACKED BEDS WITH SPHERES Mustafa Yasin Gökaslan, Mustafa Özdemir, Lütfullah Kuddusi Numerical study of the influence of magnetic field and throughflow on the onset of thermo-bio-convection in a Forchheimer‑extended Darcy-Brinkman porous nanofluid layer containing gyrotactic microorganisms Arpan Garg, Y.D. Sharma, Subit K. Jain, Sanjalee Maheshwari A nanofluid couple stress flow due to porous stretching and shrinking sheet with heat transfer A. B. Vishalakshi, U.S. Mahabaleshwar, V. Anitha, Dia Zeidan ROTATING WAVY CYLINDER ON BIOCONVECTION FLOW OF NANOENCAPSULATED PHASE CHANGE MATERIALS IN A FINNED CIRCULAR CYLINDER Noura Alsedais, Sang-Wook Lee, Abdelraheem Aly Porosity Impacts on MHD Casson Fluid past a Shrinking Cylinder with Suction Annuri Shobha, Murugan Mageswari, Aisha M. Alqahtani, Asokan Arulmozhi, Manyala Gangadhar Rao, Sudar Mozhi K, Ilyas Khan CREEPING FLOW OF COUPLE STRESS FLUID OVER A SPHERICAL FIELD ON A SATURATED BIPOROUS MEDIUM Shyamala Sakthivel , Pankaj Shukla, Selvi Ramasamy
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain