Доступ предоставлен для: Guest

STATIONARY CONVECTION IN THE ELECTROHYDRODYNAMIC THERMAL INSTABILITY OF JEFFREY NANOFLUID LAYER SATURATING A POROUS MEDIUM: FREE-FREE, RIGID-FREE, AND RIGID-RIGID BOUNDARY CONDITIONS

Том 23, Выпуск 11, 2020, pp. 1043-1063
DOI: 10.1615/JPorMedia.2020035061
Get accessGet access

Краткое описание

The onset of stationary convection in electrohydrodynamic thermal instability of Jeffrey nanofluid layer saturating a porous medium for free-free, rigid-free, and rigid-rigid boundaries is studied. Darcy-Jeffrey fluid model is used to describe rheological behavior of nanofluid. The conservation of momentum equations are modified due to the presence of Jeffrey parameter and under the influence of an applied alternating current (AC) electric field by the inclusion of dielectrophoretic force and Coulomb force. By applying linear stability analysis based upon perturbation theory and one-term Galerkin method, we derive the expression for thermal Rayleigh number for free-free, rigid-free, and rigid-rigid boundaries on the onset of stationary convection. The effects of Jeffrey parameter, AC electric Rayleigh number, Lewis number, modified diffusivity ratio, nanoparticle Rayleigh number, and medium porosity have been discussed for the case of stationary convection.

ЛИТЕРАТУРА
  1. Akbar, N.S. and Nadeem, S., Mixed Convective Peristaltic Motion of a Magnetohydrodynamic (MHD) Jeffrey Nanofluid in an Asymmetric Channel with Newtonian Heating, Z. Naturforsch, vol. 68a, pp. 433-441, 2013. .

  2. Akbar, N.S., Nadeem, S., and Lee, C., Characteristics of Jeffrey Fluid Model for Peristaltic Flow of Chyme in Small Intestine with Magnetic Field, Results Phys, vol. 3, pp. 152-160, 2013. .

  3. Ansari, M.S., Magagula, V.M., and Trivedi, M., Jeffrey Nanofluid Flow near a Riga Plate: Spectral Quasilinearization Approach, Heat Transf. Asian Res., vol. 49, pp. 1491-1510,2020. .

  4. Bhadauria, B.S. and Agarwal, S., Convective Transport in a Nanofluid Saturated Porous Layer with Thermal Non Equilibrium Model, Transp. Porous Media, vol. 88, pp. 107-131,2011. .

  5. Buongiorno, J., Convective Transport in Nanofluids, ASMEJ. Heat Transf., vol. 128, pp. 240-250,2006. .

  6. Chand, R. and Rana, G.C., On the Onset of Thermal Convection in Rotating Nanofluid Layer Saturating a Darcy-Brinkman Porous Medium, Int. J. Heat Mass Transf., vol. 55, pp. 5417-5424, 2012a. .

  7. Chand, R. and Rana, G.C., Oscillating Convection of Nanofluid in Porous Medium, Transp. Porous Media, vol. 95, pp. 269-284, 2012b. .

  8. Chand, R. and Rana, G.C., Thermal Convection of Rivlin-Ericksen Elastico-Viscous Nanofluid Saturated in Porous Medium, J. Fluid Eng.-ASME, vol. 134, Article ID 121203 (7 pages), 2012c. .

  9. Chand, R. and Rana, G.C., Electrothermo Convection of Rotating Nanofluid in Brinkman Porous Medium, Special Topics Rev. Porous Media Int. J, vol. 7, pp. 181-194, 2016. .

  10. Chand, R., Rana, G.C., and Hussein, A.K., On the Onset of Thermal Instability in a Low Prandtl Number Nanofluid Layer in a Porous Medium, J. Appl. FluidMech., vol. 8, pp. 265-272,2015. .

  11. Chand, R., Rana, G.C., and Puigjaner, D., Thermal Instability Analysis of an Elastico-Viscous Nanofluid Layer, Eng. Transact., vol. 66, pp. 301-324, 2018. .

  12. Chand, R., Rana, G.C., and Yadav, D., Thermal Instability of Couple-Stress Nanofluid with Vertical Rotation in a Porous Medium, J. Porous Media, vol. 20, pp. 635-648, 2017. .

  13. Dey, D., Dusty Jeffrey Fluid Flow in a Rotating System with Volume Fraction and Hall Effect: An Analytical Approach, Adv. Modell. Anal, vol. A55, pp. 70-75, 2018. .

  14. Donna, M.G.C., Tyrone, D.D., Ramkissoon, H., and Alam, R.S., On Thermal Instabilities in a Viscoelastic Fluid Subject to Internal Heat Generation, Int. J. Math. Comput. Sci., vol. 5, pp. 1152-1159,2011. .

  15. Hayat, T., Abbas, T., Ayub, M., Muhammad, T., and Alsaedi, A., On Squeezed Flow of Jeffrey Nanofluid between Two Parallel Disks, Appl. Sci, vol. 6, pp. 346-360, 2016. .

  16. Hayat, T., Aziz, A., Muhammad, T., and Alsaedi, A., A Revised Model for Jeffrey Nanofluid Subject to Convective Condition and Heat Generation/Absorption, PLOS ONE, vol. 12, p. e0172518,2017. .

  17. Imran, M.A., Miraj, F., Khana, I., and Tlili, I., MHD Fractional Jeffrey's Fluid Flow in the Presence of Thermo Diffusion, Thermal Radiation Effects with First Order Chemical Reaction and Uniform Heat Flux, Results Phys., vol. 10, pp. 10-17, 2018. .

  18. Imtiaz, M., Hayat, T., and Alsaedi, A., MHD Convective Flow of Jeffrey Fluid due to a Curved Stretching Surface with Homogeneous-Heterogeneous Reactions, PLOS ONE, vol. 11, p. e0161641, 2016. .

  19. Jeffreys, H., The Stability of a Layer of Fluid Heated below, London, Edinburgh, Dublin Philosoph. Mag. J. Sci, vol. 2, pp. 833-844, 1926. .

  20. Jeffreys, H., Some Cases of Instability in Fluid Motion, Proc. R. Soc. Lond., vol. A118, pp. 195-208,1928. .

  21. Kuznetsov, A.V., Nanofluid Biothermal Convection: Simultaneous Effects of Gyroactic and Oxytractic Microorganisms, Fluid Dyn. Res, vol. 43, Article ID 055505, 2011. .

  22. Kuznetsov, A.V. and Nield, D.A., Thermal Instability in a Porous Medium Layer Saturated by a Nanofluid: Brinkman Model, Transp. Porous Media, vol. 81, pp. 409-422, 2009. .

  23. Kuznetsov, A.V. and Nield, D.A., Effect of Local Thermal Non-Equilibrium on the Onset of Convection in a Porous Medium Layer Saturated by a Nanofluid, Transp. Porous Media, vol. 83, pp. 425-436, 2010. .

  24. Maekawa, T., Abe, K., and Tanasawa, I., Onset of Natural Convection under an Electric Field, Int. J. Heat Mass Transf., vol. 35, pp. 613-621, 1992. .

  25. Mahajan, A. and Sharma, M.K., The Onset of Penetrative Convection Stimulated by Internal Heating in a Magnetic Nanofluid Saturating a Rotating Porous Medium, Can. J. Phys, vol. 96, pp. 898-911,2018. .

  26. Martinez-Mardones, J. and Perez-Garcia, C., Linear Instability in Viscoelastic Fluid Convection, J. Phys.: Condens. Matter, vol. 2, no. 5, pp. 1281-1290, 1990. .

  27. Nadeem, S. and Akbar,N.S., Peristaltic Flow of a Jeffrey Fluid with Variable Viscosity in an Asymmetric Channel, Z. Naturforsch., vol. 64a, pp. 713-722,2009. .

  28. Nallapu, S., Radhakrishnamacharya, G., and Chamkha, A.J., Flow of a Jeffrey Fluid through a Porous Medium in Narrow Tubes, J. Porous Media, vol. 18, pp. 71-78, 2015. .

  29. Nield, D.A. and Bejan, A., Convection in Porous Media, Berlin: Springer International, 2017. .

  30. Nield, D.A. and Kuznetsov, A.V., Thermal Instability in a Porous Medium Layer Saturated by a Nanofluid, Int. J. Heat Mass Transf., vol. 52, pp. 5796-5801,2009. .

  31. Othman, M.I., Electrohydrodynamic Instability of a Rotating Layer of a Viscoelastic Fluid Heated from Below, ZAMP, vol. 55, pp. 468-482, 2004. .

  32. Patil, R.P. and Rudraiah, N., Stability of Hydromagnetic Thermoconvective Flow through Porous Medium, ASME J. Appl. Mech., vol. 40, pp. 879-884, 1973. .

  33. Rana, G.C. and Chand, R., Stability Analysis of Double-Diffusive Convection of Rivlin-Ericksen Elastico-Viscous Nanofluid Saturating a Porous Medium: A Revised Model, Forsch Ingenieurwes, vol. 79, pp. 87-95, 2015. .

  34. Rana, G.C. and Chand, R., On the Onset of Double-Diffusive Convection in a Couple Stress Nanofluid in a Porous Medium, Periodica Polytechnica Mech. Eng., vol. 62, pp. 233-240, 2018. .

  35. Rana, G.C., Chand, R., and Sharma, V., On the Onset of Instability of a Viscoelastic Fluid Saturating a Porous Medium in Electrohydrodynamics, Rev. Cub. Fis., vol. 33, pp. 89-94, 2016a. .

  36. Rana, G.C., Chand, R., and Sharma, V., Onset of Electrohydrodynamic Instability of a Rotating Viscoelastic Fluid Layer Saturating a Porous Medium, Acta Technica, vol. 61, pp. 31-44,2016b. .

  37. Rana, G.C., Chand, R., and Sharma, V., The Effect of Rotation on the Onset of Electrohydrodynamic Instability of an Elastico-Viscous Dielectric Fluid Layer, Bull. Polish Acad. Sci.-Tech. Sci., vol. 64, pp. 143-149, 2016c. .

  38. Rana, G.C., Chand, R., Saxena, H., and Gautam, P.K., On the Onset of Electrohydrodynamic Instability in a Couple-Stress Nanofluid Saturating a Porous Medium, Spec. Topics Rev. Porous Media Int. J, vol. 10, pp. 539-553, 2019a. .

  39. Rana, G.C., Saxena, H., and Gautam, P.K., The Onset of Electrohydrodynamic Instability in a Couple-Stress Nanofluid Saturating a Porous Medium: Brinkman Model, Rev. Cubana Fis., vol. 36, pp. 37-45,2019b. .

  40. Rana, G.C., Saxena, H., and Gautam, P.K., Electrohydrodynamic Thermal Instability in a Porous Medium Layer Saturated by a Walters' (Model B') Elastico-Viscous Nanofluid, Structural Integrity Life, vol. 19, pp. 86-93,2019c. .

  41. Rana, G.C., Thakur, R.C., and Kango, S.K., On the Onset of Double-Diffusive Convection in a Layer of Nanofluid under Rotation Saturating a Porous Medium, J. Porous Media, vol. 17, pp. 657-667, 2014. .

  42. Roberts, P.H., Electrohydrodynamic Convection, Q. J. Mech. Appl. Math, vol. 22, pp. 211-220, 1969. .

  43. Ruo, A.C., Chang, M.H., and Chen F., Effect of Rotation on the Electrohydrodynamic Instability of a Fluid Layer with an Electrical Conductivity Gradient, Phys. Fluids, vol. 22, pp. 024102-1-11,2010. .

  44. Sharma, V., Chowdhary, A., and Gupta, U., Electrothermal Convection in Dielectric Maxwellian Nanofluid Layer, J. Appl. Fluid Mech., vol. 11, pp. 765-777, 2018. .

  45. Shahzad, F., Sagheer, M., and Hussain, S., Numerical Simulation of Magnetohydrodynamic Jeffrey Nanofluid Flow and Heat Transfer over a Stretching Sheet Considering Joule Heating and Viscous Dissipation, AIP Adv., vol. 8, Article ID 065316,2018. .

  46. Shehzad, S.A., Hayat, T., and Alsaedi, A., MHD Flow of Jeffrey Nanofluid with Convective Boundary Conditions, J. Braz. Soc. Mech. Sci. Eng., vol. 37, pp. 873-883, 2015. .

  47. Sheu, L.J., Thermal Instability in a Porous Medium Layer Saturated with a Viscoelastic Nanofluid, Transp. Porous Media, vol. 88, pp. 461-477, 2011. .

  48. Shivakumara, I.S., Akkanagamma, M., and Chiu-on, Ng., Electrohydrodynamic Instability of a Rotating Couple Stress Dielectric Fluid Layer, Int. J. Heat Mass Transf., vol. 62, pp. 761-771, 2013. .

  49. Shivakumara, I.S., Nagashree, M.S., and Hemalatha, K., Electroconvective Instability in a Heat Generating Dielectric Fluid Layer, Int. Commun. Heat Mass Transf., vol. 34, pp. 1041-1047, 2007. .

  50. Shivakumara, I.S., Rudraiah, N., and Hemalatha, K., Electrothermoconvection in a Dielectric Fluid Layer in the Presence of Heat Generation, Int. J. Appl. Math., vol. 1, pp. 87-101, 2009. .

  51. Shivakumara, I.S., Rudraiah, N., and Lee, J., The Onset of Darcy-Brinkman Electroconvection in a Dielectric Fluid Saturated Porous Layer, Transp. Porous Med., vol. 90, pp. 509-528, 2011. .

  52. Sreelakshmi, K., Sarojamma, G., Murthy, J., andRamana, V., Homotopy Analysis of an Unsteady Flow Heat Transfer of a Jeffrey Nanofluid over a Radially Stretching Convective Surface, J. Nanofluids, vol. 7, pp. 62-71,2018. .

  53. Sushma, K., Sreenadh, S., and Dhanalakshmi, P., Mixed Convection Flow of a Jeffrey Nanofluid in a Vertical Channel, Middle-East J Sci. Res, vol. 25, pp. 950-959,2017. .

  54. Takashima, M. and Ghosh, A.K., Electrohydrodynamic Instability in a Viscoelastic Liquid Layer, J. Phys. Soc. Japan, vol. 47, pp. 1717-1722, 1979. .

  55. Turnbull, R.J., Effect of Dielectrophoretic Forces on the Benard Instability, Phys. Fluids, vol. 12, pp. 1809-1815, 1969. .

  56. Turnbull, R.J. andMelcher, J.R., Electrodynamic Rayleigh-Taylor Bulk Instability, Phys. Fluids, vol. 12, pp. 1160-1166,1969. .

  57. Tzou, D.Y., Instability of Nanofluids in Natural Convection, ASMEJ. Heat Transf, vol. 130, Article ID 072401 (9 Pages), 2008a. .

  58. Tzou, D.Y., Thermal Instability of Nanofluids in Natural Convection, Int. J. Heat Mass Transf., vol. 51, pp. 2967-2979, 2008b. .

  59. Yadav, D., Agrawal, G.S., and Bhargava, R., The Onset of Convection in a Binary Nanofluid Saturated Porous Layer, Int. J. Theor. Appl. Multi. Mech., vol. 2, pp. 198-224, 2012a. .

  60. Yadav, D., Bhargava, R., and Agrawal, G.S., Boundary and Internal Heat Source Effects on the Onset of Darcy-Brinkman Convection in a Porous Layer Saturated by Nanofluid, Int. J. Therm. Sci., vol. 60, pp. 244-254,2012b. .

  61. Yadav, D., Bhargava, R., and Agrawal, G.S., Numerical Solution of a Thermal Instability Problem in a Rotating Nanofluid Layer, Int. J. Heat Mass Transf, vol. 63, pp. 313-322, 2013. .

  62. Yadav, D., Cho, H.H., and Lee, J., Brinkman Convection Induced by Purely Internal Heating in a Rotating Porous Medium Layer Saturated by a Nanofluid, Powder Technol, vol. 286, pp. 592-601, 2015a. .

  63. Yadav, D., Kim, C., Lee, J., and Cho, H.H., Influence of Magnetic Field on the Onset of Nanofluid Convection Induced by Purely Internal Heating, Comput. Fluids, vol. 121, pp. 26-36, 2015b. .

  64. Yadav, D., Lee, J., and Cho H.H., Electrothermal Instability in a Porous Medium Layer Saturated by a Dielectric Nanofluid, J. Appl. Fluid Mech, vol. 9, pp. 2123-2132, 2016. .

  65. Yadav, D., Mohamed, R.A., Lee, J., and Cho, H.H., Thermal Convection in a Kuvshiniski Viscoelastic Nanofluid Saturated Porous Layer, Ain Shams Eng. J., vol. 8, pp. 613-621,2017. .

ЦИТИРОВАНО В
  1. Yadav Dhananjay, Influence of anisotropy on the Jeffrey fluid convection in a horizontal rotary porous layer, Heat Transfer, 50, 5, 2021. Crossref

  2. Yadav Dhananjay, Effect of electric field on the onset of Jeffery fluid convection in a heat-generating porous medium layer, Pramana, 96, 1, 2022. Crossref

  3. Yadav Dhananjay, Mohamad Abdul A, Awasthi Mukesh K, The Horton–Rogers–Lapwood problem in a Jeffrey fluid influenced by a vertical magnetic field, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 235, 6, 2021. Crossref

  4. Moatimid Galal M., Mohamed Mona A. A., Elagamy Khaled, A MOTION OF JEFFREY NANOFLUID IN POROUS MEDIUM WITH MOTILE MICROORGANISMS BETWEEN TWO REVOLVING STRETCHING DISCS: EFFECTS OF HALL CURRENTS , Journal of Porous Media, 25, 10, 2022. Crossref

Статьи, принятые к публикации

Effects of Momentum Slip and Convective Boundary Condition on a Forced Convection in a Channel Filled with Bidisperse Porous Medium (BDPM) Vanengmawia PC, Surender Ontela ON THERMAL CONVECTION IN ROTATING CASSON NANOFLUID PERMEATED WITH SUSPENDED PARTICLES IN A DARCY-BRINKMAN POROUS MEDIUM Pushap Sharma, Deepak Bains, G. C. Rana Effect of Microstructures on Mass Transfer inside a Hierarchically-structured Porous Catalyst Masood Moghaddam, Abbas Abbassi, Jafar Ghazanfarian Insight into the impact of melting heat transfer and MHD on stagnation point flow of tangent hyperbolic fluid over a porous rotating disk Priya Bartwal, Himanshu Upreti, Alok Kumar Pandey Numerical Simulation of 3D Darcy-Forchheimer Hybrid Nanofluid Flow with Heat Source/Sink and Partial Slip Effect across a Spinning Disc Bilal Ali, Sidra Jubair, Md Irfanul Haque Siddiqui Fractal model of solid-liquid two-phase thermal transport characteristics in the rough fracture network shanshan yang, Qiong Sheng, Mingqing Zou, Mengying Wang, Ruike Cui, Shuaiyin Chen, Qian Zheng Application of Artificial Neural Network for Modeling of Motile Microorganism-Enhanced MHD Tangent Hyperbolic Nanofluid across a vertical Slender Stretching Surface Bilal Ali, Shengjun Liu, Hongjuan Liu Estimating the Spreading Rates of Hazardous Materials on Unmodified Cellulose Filter Paper: Implications on Risk Assessment of Transporting Hazardous Materials Heshani Manaweera Wickramage, Pan Lu, Peter Oduor, Jianbang Du ELASTIC INTERACTIONS BETWEEN EQUILIBRIUM PORES/HOLES IN POROUS MEDIA UNDER REMOTE STRESS Kostas Davanas Gravity modulation and its impact on weakly nonlinear bio-thermal convection in a porous layer under rotation: a Ginzburg-Landau model approach Michael Kopp, Vladimir Yanovsky Pore structure and permeability behavior of porous media under in-situ stress and pore pressure: Discrete element method simulation on digital core Jun Yao, Chunqi Wang, Xiaoyu Wang, Zhaoqin Huang, Fugui Liu, Quan Xu, Yongfei Yang Influence of Lorentz forces on forced convection of Nanofluid in a porous lid driven enclosure Yi Man, Mostafa Barzegar Gerdroodbary SUTTERBY NANOFLUID FLOW WITH MICROORGANISMS AROUND A CURVED EXPANDING SURFACE THROUGH A POROUS MEDIUM: THERMAL DIFFUSION AND DIFFUSION THERMO IMPACTS galal Moatimid, Mona Mohamed, Khaled Elagamy CHARACTERISTICS OF FLOW REGIMES IN SPIRAL PACKED BEDS WITH SPHERES Mustafa Yasin Gökaslan, Mustafa Özdemir, Lütfullah Kuddusi Numerical study of the influence of magnetic field and throughflow on the onset of thermo-bio-convection in a Forchheimer‑extended Darcy-Brinkman porous nanofluid layer containing gyrotactic microorganisms Arpan Garg, Y.D. Sharma, Subit K. Jain, Sanjalee Maheshwari A nanofluid couple stress flow due to porous stretching and shrinking sheet with heat transfer A. B. Vishalakshi, U.S. Mahabaleshwar, V. Anitha, Dia Zeidan ROTATING WAVY CYLINDER ON BIOCONVECTION FLOW OF NANOENCAPSULATED PHASE CHANGE MATERIALS IN A FINNED CIRCULAR CYLINDER Noura Alsedais, Sang-Wook Lee, Abdelraheem Aly Porosity Impacts on MHD Casson Fluid past a Shrinking Cylinder with Suction Annuri Shobha, Murugan Mageswari, Aisha M. Alqahtani, Asokan Arulmozhi, Manyala Gangadhar Rao, Sudar Mozhi K, Ilyas Khan CREEPING FLOW OF COUPLE STRESS FLUID OVER A SPHERICAL FIELD ON A SATURATED BIPOROUS MEDIUM Shyamala Sakthivel , Pankaj Shukla, Selvi Ramasamy
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain